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1.0 SUMMARY
• , °

Data acquired on the transmission of upstream-generated, low frequency

noise transmission through aircraft engine-type turbines during NAS3-19435

showed the existing theory to be inadequate. This program, NAS3-20027,

was directed towards improvement of the theory and evolution of a working tool

to predict the low frequency noise transmission through turbines.

A comprehensive analytical study was performed to define the improved

theory. Two approaches were utilized in the study: the existing, actuator-

disk analysis and a new, finite-chord analysis. The frequency dependence

was preserved through the latter, finite-element treatment of nozzle and

rotor blades. However, it reproduced the results of the actuator-disk

analysis for low frequencies and indicated that the simpler actuator-disk

modeling was valid for frequencies as high as 0.4 to 0.5 of the blade

passing frequency. This encompasses the entire frequency range of interest
for combustor noise.

The existing, actuator-disk analysis and the new, finite-chord analysis

both utilized an isolated blade row assumption. The effect of interaction

with adjacent blade rows (multistaging) was added to the actuator-disk

analysis, and due consideration was given to spinning modes by modeling

these as equivalent plane waves. A frequency inverse energy distribution

corresponding to the asymmetric sound introduction in the NAS3-19435 tests

was specified for the multiple modes. The resulting analysis was compared

with the bathtub spectrum specified in the experimental investigation and

was found to be in very good agreement with the midfrequency floor, that is,

nominally the 200 to 1200 Hz region. The lobe encountered in the data for

this region was indeed shown to be causeG by the first spinning mode cut-

on. Subsequent cut-ons were found to be responsible for much of the data

scatter noted previously about the nominal floor. In fact, the floor was

found to extend beyond the frequency range first specified to about 2000-

2500 Hz. The increase in transmission loss constituting the high frequency

end of the bathtub spectrum was attributed to the diffraction by the blades.

The effect of area variations was studied and found to be responsible

for a spurious increase in the transmission loss data at the very low

frequencies (below 200 Hz). The apparent increase was caused by location of

the downstream sensors at a pressure cancellation point in the turbine rig.

The interaction of the acoustic waves with blade passage shocks was

analyzed and found to be a very weak, second-order effect.

The new theory was validated by comparison of the predicted and observed

trends for the floor as a function of the pressure ratio and speed.



TwOcomputer programs incorporating the new theory were written, and
the program listings are provided in the Appendices, along with user
instructions. Oneprogram is for unchoked turbines and uses an exact
solution method. The other uses an iterative solution and is a generalized
procedure for any combination of choked and unchoked rows.

The programs were exercised parametrically and charts constructed to
approximately predict the low frequency noise transfer for single and
multistage turbines. The transmission loss through the exhaust nozzle was
found to merit consideration also, and was separately defined.

Recommendationswere madefor continuing work and include:

• Coupling of the turbine and exhaust nozzle wave systems.

• Completion of the modular prediction method for combustor noise.

2



2.0 INTRODUCTION

Studies of advanced aircraft propulsion systems indicate that combustor

noise is a potential contributor to overall systems noise. This is especially

true for propulsion systems with reduced fan and jet noise either due to

cycle selection (for example, high bypass and turboshaft engines), or

through incorporation of advanced acoustic treatment and/or mixed-flow

exhaust systems as proposed for the Energy Efficient Engine. There has

also been much speculation (see Reference I) that "core," "tailpipe,"

or "excess" noise, all of which are generic terms for internally generated

low frequency noise, constitute a floor in-flight for turbojet engines,

such as used on the Concorde, or for low bypass engines that might be

proposed for American AST application.

Accurate prediction of the different components is an important element

of systems noise analysis. While General Electric's Unified Line combustor

noise prediction method (Reference 2) has been found to be a reasonably ac-

curate predictor of far-field levels for current engines, there is some

question about adequacy for engines employing advanced combustors and

turbines. The Unified Line method consists of a semiempirical correlation

of engine data and makes no attempt to separate the individual elements.

Recognizing that the problem is a great deal more complex than a black-

box approach can cope with, General Electric has been engaged in defining an

alternative, modular approach to combustor noise prediction under NASA and

FAA sponsorship. The different modules consist of:

• Noise generation at the source

• Transmission through downstream turbine blad_ rows

• Transmission through the exhaust nozzle

• Propagation through the jet stream(s).

The acoustic characteristics of combustors at the source have been

researched both experimentally and analytically in recent years (see

References 1-6). Also, the investigation is continuing most actively at

the NASA Lewis Research Center and at General Electric under NASA contract

(NAS3-19736). The latter involves measurement of the source character-

istics of an advanced, low emission combustor installed in an engine and

the associated turbine transmission loss.

The salient features of low frequency noise transmission through tur-

bines were determined on a component basis during an earlier NASA contract

(Reference 7). Comparison of the data with an actuator-disk, isolated-

blade-row, analytical model (Reference 3) showed the existing theory needed

improvement. This program contained specific tasks to alleviate the short-

comings in the existing theory and to formulate an alternative theory free

of the limitation associated with actuator-disk models.



"'" The desired program goals were to:

I,

Define an improved, validated theory for predicting the acoustic

transfer function for low frequency noise propagating through
aircraft engine turbines.

,

Provide working charts to predict the transfer of low frequency
noise through single and multistage turbines.

4



3.0 THEORY

3.1 BACKGROUND

An analysis was performed previously (Reference 8) which examined the

transmission and attenuation of sound waves through a turbine row on the basis

that both the pitch and chord length of the turbine row were infinitesimally

small compared to the wavelength of the sound impinging on it. In this

limit, the turbine row may be modeled as an actuator disk which creates an

abrupt discontinuity of the flow on either side of it (Figure i). By employ-

ing conservation of mass flow and energy flux normal to the blade row, and by

using the Kutta condition, the attenuation of a sound wave was calculated.

This analysis was valid only for subsonic flow throughout but was later

extended to include supersonic relative exit flow under NAS3-18551 (Reference

3). One of the key features of the new analysis was replacement of the Kutta

condition by a choked-flow relationship. The analyses were programmed and

exercised in a parametric study of the NASA Core, single-stage, high pressure

turbine. The results are shown in Figure 2 in the form of the predicted atten-

uation for the plane-wave case as a function of the turbine stage pressure

ratio with percent design speed as a parameter. The attenuation for the

nozzle and rotor are shown separately and then summed to provide a stage

attenuation. The supersonic and subsonic regimes are demarcated, and there

is little discernible deviation going from one to the other. The predicted

attenuation apparently increases slightly with pressure ratio over the sub-

sonicrange, remains flat in the transonic regime, and then decreases as the

Mach number increases to well above unity.

An obvious problem with this analytical model was the loss of frequency

content due to the actuator-disk assumption. Also, the upper frequency limit

on the model was undefined. A second, more subtle problem was the "isolated

blade row" assumption: that is, the use of anechoic terminations both up-

stream and downstream of the blade row in question. The effect of adjoining

blade rows or discontinuities was not addressed.

An experimental investigation of low frequency noise through aircraft

engine-type turbines was conducted under NAS3-19435, and the results are

reported in Reference 7. The data from these scale-model-sized turbines were

compared with the theory, and discrepancies between theory and data were

noted. The experimentally determined transmission loss indicated a frequency

dependence below i00 Hz and above 1500 Hz, increasing in both cases from a

fairly constant value of attenuation in between. For single-stage turbines,

the attenuation associated with this "bathtub" floor was found to correspond

closely to the transmission loss predicted by the actuator-disk analysis.

However, for a three-stage configuration, the attenuation was overpredicted

by six to seven dB. An earlier check (Reference 3) of the analysis indicated

that the attenuation for a six-stage arrangement was overpredicted by 20 dB.

This clearly indicates that the attenuation for a multistage configuration

cannot simply be obtained by summing up the attenuation for each individual
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blade row. The interactive effects of adjacent blade rows must be given due

consideration. The interactive effect is integrated into the theory in the

"multistaging" analysis in Section 3.3.

An analytical model utilizing a finite-chord-airfoil model, in order to pre-

serve the frequency, is described in Section 3.2. The effect of acoustic wave

interaction with the weak shock waves encountered in the flow passages is

explored separately. The influence of abrupt area variations is examined in

an attempt to discern associated frequency dependence, particularly effects

which would influence the data obtained in NAS3-19435; that is, to note

trends introduced by the unique facility used to obtain these data.

These data are compared with the theory in Section 3.4. A computer pro-

gram incorporating the analysis is presented, along with operating instructions

and sample printout. A simple, first-cut method of predicting turbine attenu-

ation for preliminary design use is described. The method is the result of a

parametric exercise of the analytical prediction program for a number of exist-

ing aircraft engine turbines. These include turbofans, turbojets, and turbo-

shafts. The final section consists of conclusions and recommendations for

future work.

3.2 FINITE-CHORD ANALYSIS

The basic idea adopted to consider the effect of finite-chord length

(and finite, _ransverse pitch) is illustrated in Figure 3. The process of
transmission of sound waves across the turbine blade row is "dismantled" into

an "incidence" problem, a "passage" problem, and an "emission" problem° In

other words, as in Reference 9, we assume: the incident sound wave first

excites duct waveguide modes as if the blade row was a semi-infinite row of

flat plates; secondly, these duct waveguide modes propagate through the tur-

bine row as if it were a doubly infinite passage of varying area and a

straight axis; finally, they reradiate plane waves on the emitted side as if

the blade row was again a semi-infinite blade row of flat plates.

The above idealization considers, to a reasonable extent, the physics of

the blade row; except, the curvature of the row is not being accounted for in

the "passage" problem (though the curvature of the blade row is accounted for

in treating the two semi-infinite blade rows corresponding to the incidence

and emission problems as of different stagger angle). With "t" and "Mn"

denoting the normal pitch at the inlet and inlet Mach number to the blade

row, if the frequency of excitation in Hz is below [a /i - MnX/2t] only the

lowest duct waveguide mode of all the duct waveguide modes excited will be

propagating. Under these circumstances, Cummins (in Reference i0) has shown

experimentally (with no flow) that even curved bends with 180 ° turning pro-

duce very little transmission loss. We will restrict the analysis to fre-

quencies below [a /_--Z_-2n/2t] (a is the speed of sound at the inlet to the

row). The effects of variable area and variable Mach number in the passage

problem are accounted for.



__ _0¢:_ Q_'JA__:--_

o

o

o

I

°,_

o=

+

C
o

+

o=

o
0

r_
o

-,-I

o

W-}

9



r -

The incidence and emission problems are largely a matter of applying
the results of Reference 9 and, hence, will not be discussed further here.

The transmission of the lowest duct wave-guide mode through the variable

area, variable Mach number, but straight passage region is discussed next.

____ X X_ _

I I

The equations governing the propagation of the lowest mode may be writ-

ten in terms of a nondimensional acoustic pressure _(p'/yp) and nondimen-
sional velocity x;(u'/U) as:

U _x+dx; U d__dx- J to ¢ = 0 (continuity equation) (la)

I i _ de dUM2 U _xx - [(_ - i) _x - j to]_

+ [2 dU
d-_- j to]x; = 0

(x-momentum equation) (Ib)

In (la) and (ib), a time dependence for all quantities of type exp (-j to t)

is assumed, U(x) denotes the steady, average, axial velocity in the nozzle;

M(x) the associated steady, average, axial Mach number; and y the specific
heat ratio*. The above equations are given in References ii to 14.

p(x) is the average, steady, static-pressure distribution in the nozzle.

i0
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For convenience of the computational scheme to be used, we first intro-

duce _ and (_ + v), rather than _ and _ as the dependent variables. We thus

rewrite (la) and (ib) as:

d
U-_ x (v + _) = j m

and

(2a)

l# 1) de dU- U dxx = [(Y + I) d-x
- 2 j _o]qb

dU
[2 d--x- j m ] (_ + ¢) (2b)

Secondly, it will prove useful to choose the independent variable as
* * is thex' = (L - x) where L is the length from U = 0 to U = a , where a

sonic velocity at the throat for the equivalent "linear" nozzle (following

Reference ii). Equations (2a) and (2b) become:

d

u--_-x, (-o + ¢) = -j o_ ¢

M 2

(1 - M 2)

dU
{[(7 + 1) d--_+ 2 j _l¢

(3a)

dU
- [2 _ + j m](v + $)} (3b)

The "linear" nozzle approximation assumes that U(x) varies linearly from the

inlet to the outlet, that is: _-_ = ./£,As stated in Reference 13, is aa .
"suprisingly satisfactory approxxma_ion for conventlonal nozzles." We next

nondimensionalize (3a) and (3b) by using a* as a velocity scale and L as the

length scale; (3a) and (3b) become:

d
(1 - _) _ ('o + ¢,) = - J rl¢

de = {[-(y + 1) + 2 j q]dp
(1- E) d-_-

+ [2 - j r]] (v + qb)}
M 2

(1 - M 2)

(4a)

(4b)

Ii



where q = _L/a* and _ = x'/L

Now, for the linear nozzle, M2/(I - M2) maybe shown to be

2
2(i - _)

(y + i) _(2 - _)

so that we have to integrate the pair:

d__ (v + $) = -j n _ (5a)
d_ (i- _)

d__ = 9.(1 - /_) {[-(y + 1) + 2j rl]_
d_ (_" + 1) g(2 - g)

+ (2 - .i n) ($ +v)} (5b)

If M i and Mf denote the initial and final Mach numbers in the nozzle (with

0 < M i < Mf < 1), the initial and final values of E are:

1/2

_i = 1 -
Mf 2 (y - i)

_f = i- I I 112

Mi2(X + 1)

2 + M.2(y - 1)
1

(6b)

Note that if 0 < M i < Mf < i, then 0 < gi < _f < i.

Suppose we start the integration near the nozzle throat at _ = _i" Assume

there is only a transmitted wave in the nozzle; hence, we may show that if

_(_i) = l, then _(_i) = i/Mf and _(_i) + _(_i) = [i + i/Mf]. Equations (5a)

and (5b) can be integrated by a Runge Kutta fourth-order scheme from _ = _i

to _ = _f with the above initial values for _ and (_ + _) at _ = _i. If the

terminal values of _ and (_ + _) at _ = _f are known, by use of impedance

relations for forward and reflected waves, _inc. at _ = _f may be shown to

be:

1 {(I - Mi) _ + Mi( _ +v)}2

12
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where 9 and (9 + v) are the computed values at E = _f (where the Mach

number is Mi).

The above describes the essence of the computation scheme that was

adopted in the present study. Mesh size was normally taken as the smaller of

(_f - _i)/lO0 or _/20n so that it was the smaller of one-hundredth of the

(nondimensional) nozzle length or one-fortieth of a wavelength (based on a*,

the speed of sound at the throat). However, for _ small or _ close to unity,

the derivatives dg/d_ and d/d_ (v + 9) can be quite large; hence, the mesh

size was reduced to one-eighth times the lesser of _ or (i - _) times the

usual step size for _ < 0,125 or _ > 0.875.

The inputs are MI, M 2 , and a frequency parameter taken here as f =

[frequency in radians/sec_ x actual nozzle curved length/speed of sound at

stagnation conditions. Then n may be shown to be:

n = f /(Y + 1)/2 / (_f - _i )

The analysis assumes y = 1.4. It calculates the static pressure ratio

(pf/pi) of the steady, ideal flow. Marble, in Reference 13, shows that as

n ÷ 0 we may expect a result for (P'transm./P'inc.) of

This is the result for "compact" nozzles. As n "+ _ we may expect a limit

from the point of view that the Blokhintsev energy is conserved at high

frequencies (as pointed out in References 12 and 14, so that (P'transm./

P'inc.) would tend to

1+ _ - 1M22 22 M 2 (i + M 1 " + Y -2 1 MI

M 1 (i + M 2) times (pf/pi).

The results for M i = 0.05_ 0.i, and Mf = 0.95, 0.975, and for "f" ranging

from 0.I. to 20, are shown in Figure 4. Notice the figure shows excellent agree-

ment at high and low values of "f" with the theories of Blokhintsev and

Marble.

The analysis described above for the passage problem was coupled to the

solutions from Reference 9 for the incidence and emission problems to derive

the complete, though approximate, solution.

M 1 and M 2 are sometimes used to denote M i and Mf respectively in what follows.

13
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To check that such a "dismantling" process is valid, comparisons were

made with the present method and with the actuator-disk method for a very low

excitation frequency. Excellent agreement was obtained between the results

of the two methods as shown in Figure 5.

Repeated calculations with the present method showed, however, that up

to frequencies (f) defined by

E 2]
a /i M i

f < 2t

the calculated results are rather insensitive to frequency. Since the rotor

blade passing frequency can be taken as WR/t, where WR is the wheel tip

velocity of the rotor and t the transverse pitch of the rotor, the above

indicates that, up to half the rotor blade passing frequency, the results

are rather insensitive to frequency. It should be pointed out that more

exact calculations in Reference 15 for flat-plate cascades bear out these

conclusions. The passage problem does have a frequency dependence, but it

turns out that, once the initial Mach number (Mi) to a row exceeds 0.3, the

frequency dependence is very slight with even the zero and infinite frequency

limits being within a dB of each other.

Thus, the most important conclusion of Section 3.1 was that, in fact,

the actuator-disk model has a high regime of validity; it is valid up to

roughly (at least) one-half the blade passing frequency. In practical terms,

for core noise interests which extend to less than one-half the blade pass-

ing frequency, there is no need to consider any frequency dependence insofar

as the analysis of the transmission phenomenon is concerned; although, fre-

quency dependencies may arise in a given experiment due to the fact that

given source types couple into a duct in a frequency-dependent manner_ and

incidence angles on the blade row may be frequency dependent.

3.3 MULTISTAGING

3.3.1 Problem Formulation

A sound wave incident on a blade row will generally give rise to a

reflected sound wave, a transmitted sound wave, and a shear (vorticity) wave.

The latter two are formed downstream of the blade row and propagate in that

direction. The former is encountered upstream of the blade row and will

propagate in a direction opposite to that of the incident wave.

The transmitted wave will, in turn, be responsible for another set of

three waves on encountering the next blade row. Further, the reflected wave

from the second blade row interaction will interact with the first blade row

giving rise to yet three more waves! It is convenient to collect all the

upstream and downstream waves after a "steady state" has been attained such

that there exist a pair of forward- and backward-propagating waves between

15
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each blade row (see Figure 6). Assuming anechoic terminations upstream and

downstream of the turbine, the incident wave provides the only forward-

propagating energy upstream, while a transmitted wave contains all the sound

energy downstream and propagates away from the turbine.

In addition to the sound waves, there exist vorticity waves at each

interface. These propagate with the flow and can only exist on the down-

stream side of each interaction; that is, the vorticity wave between an

upstream nozzle and a rotor is determined by the interactions at the nozzle.

Since the wavelengths of interest here are of the order of a foot, while

the blade chords and spacings are of the order of an inch, an actuator-disk

analysis is conveniently applicable. Also, the phase differences between

interfaces are small and can be neglected, considerably simplifying the

problem.

A two-dimensional Cartesian coordinate system, fixed with respect to

each blade row in turn, is used. Hence all quantities assume their relative

values at each rotating blade row, as distinct from their absolute values.

In this analysis, the relative inlet Mach number and the axial component of

the exhaust Mach number are being limited to subsonic values. At any inter-

face, upstream quantities will be denoted by the subscript n and downstream

quantities by m. Hence, in a three-stage turbine, n can assume values from

one to six, and m from two to seven, as is shown in Figure 6.

3.3.2 Wave Description

The wave interaction at each interface can be described schematically as

in Figure 7. The direction of rotation defines the positive y-axis and

the axial flow direction the positive x-axis. The flow angles are given by a

and B upstream and downstream _f the blade row respectively. Since alternate

blade rows rotate and are fixed to each blade row in turn, an and Bn are not

equal but are related by the rotor velocity component. Note that for tur-

bines B will generally be negative downstream of a rotor and positive down-

stream of a nozzle.

The sign on the wave propagation angles is defined solely by the y-

component of the velocity, as the x-components are predetermined by the for-

ward- and backward-propagation terms. Hence all e's shown in Figure 7 are

positive.

The frequency across any interface is preserved. However, since the

acoustic velocity varies and the wave number is defined by m/a, upstream and

downstream wave numbers are related by

km an

kn am (7)
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where a - ambient acoustic velocity

k - wave number, m/a

- circular frequency, 2_f

The pressure perturbation associated with forward- and backward-

traveling sound waves can be expressed as:

k (x cos + y sin 8Fn ) ]
P;n = Fn exp j n BFn - ot

i + M cos + M sin
nx BFn ny 0Fn

(8)

and

= exp jPBn Bn
kn (-x cos BBn + y sin 8Bn) t]

1 Hnx cos 0Bn + My sin 8Bn
(9)

where the amplitudes Fn and Bn are fractions of the amplitude in the incident

wave. That is, the incident wave is given by:

kI (x cos 81 + y sin eI) .]Pi = exp j i + Mix cos 81 + sin 81 - _j (I0)Mly

The corresponding density and velocity perturbations are given by:

PFm

PFm = a2
m

m = 2, 3, • .. 7

(ii)

The primed quantities denote a perturbation value, as distinct from steady-
state values.

PFm
(U_m, V_m) = (cos 8Fm, sin eFm) Pmam (12)

n = i, 2, ... 6 (13)

2O



(UBn_ v_n) = (-cos OBn_sin eBn)
PBn
Pnan

!

(15)

(ui, = (cosel,

(16)

There are no pressure or density perturbations associated with a vorticity

wave, hence

(17)

" -- 0p = OQmm

The velocity perturbations convect with the flow and assume the form:

(U_m , v_) = (KQx, KQy) Qm expj {kmx x + kmy Y - _t)

(18)

where the direction cosines KQx and EQy

The y-dependence of all the waves

remain to be defined.

is determined by the incident wave:

kn sin 8Fn

i + Mnx cos 8F n + Mny sin eFn

kn sin 0Bn

= i - Mnx cos eBn + Mny sin eBn

(19a)

km sin OF m

i + Mmx cos 6Fm + M my sin _Fm

(19b)

km sin 6Bm

i - Mnx cos eBm + Mmy sin 8Bm

kmy

(19c)

(19d)
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After somemanipulation, the following expressions can be derived for 0Bn,
. 0Bin, and 0Froin terms of the "known" 0Fn (0F1 - 81):

tan 0Bn=
(i - M2x)Sin eFn

(i + M2x)cos eFn + 2 Mnx
(20)

- Gmn Minx (I - Gmn Mmy) + GmnJ[(l - Gmn Mm¥)2 - (i - _) Gm2n] (21)

tan OBm = (1 - Gmn Mmy)2 - G2 n

Gmn Minx (I - Gmn Mmy ) + GmnJ[(l -Gm n Mmy)2 - (I - M_) _n]

tan OFm = (I - gmn Mmy) 2 - G2n

(22)

kmy= Gm n
km

(23)

where k___n sin eFn (24)

Gmn = km 1 + Mnx cos eFn + Mny sin 8Fn

The quantity kmx is determined using the fact that the vorticity wave con-

vects with the flow. That is, the wave will appear fixed (free of time

dependence) in a coordinate frame moving with the fluid. The coordinate

transformation is given by:

xF = x- am Minx t

yF--Y-a M tm my

The exponent in equation (18) becomes ...

{kmx (xF + am Minx t) + kmy (YF + am Mmy t) - _t}
(25)

22



Since the time dependencemust vanish,

kmx amMmx+ kmyam Mmy- m = 0
r#- r, _ ' "

km - kmy Mmy

or kmx = Mm x

since km = u/a m

Therefore kmx 1- (kmy/km) Mmy

km Mmx

kmx 1 - Gm n Mmy
or -- --

km Mmx
(26)

The direction cosines are determined from the fact that the vorticity wave is

divergence free, so that

_u _v

Qm + Qm = 0.
_x _y

This requires

k u +k v =0.
mx Qm my Qm

Equation (18) can then be expressed as

I._2 +-_2--'_2--_kk2 " % exp j [kmx x + kmyY-_t ] (27)

The reflected and transmitted waves always appear on the opposite side

of the axis from the incident wave. Using the sign convention of Figure 7,
this means

OR > 0 and 0T > 0 when OI > 0

8R < 0 and 8T < 0 when 81 < 0

8R = 8T = 0 when 81 = 0

23



Cutoff Angles

There are two cutoff criteria for each blade row.

(a) Upstream Cutoff

On the upstream side of a blade row, the fact that a wave is forward

propagating implies that

IOFn] < 90 ° + sin -I Mnx (28a)

This condition can alternately be expressed as:

U + a cos @Fn > 0 (28b)n n

Hence the upstream cutoff angles are determined by using an equality sign in

expression (28). Waves exceeding leFnl cannot be incident on the blade row

in question as they convect upstream.

(b) Downstream Cutoff

On the downstream side of a blade row, a forward-propagating wave

implies that

l@Fml < 90 ° + sin -I Mmx (29a)

This gives cutoff angles of:

tan OFm , cut-off =
-Mmx (29b)

This also defines the transmitted wave angle for which the radical in equa-

tion (22) becomes zero. For angles larger than this cutoff angle, the

radical becomes negative and the wave decays exponentially.

Corresponding to the eFm of equation (29) are eFn, which can be derived

using equation (19b)

2 2 2

or tan OFn, cut-off = GnmMnx(l-GnmMny)+Gnm"l-GnmMn_2 2
(l-GnmMny) -Gnm

(30)

where Grnn = km sin@Fm

kn l+MmxCOS0Fm+MmysineFm
(31)

and @Fm is defined by equation (29b).

Real values of 8Fn from equation (30) impose further limits on forward-
propagating waves that are transmitted through any blade row.
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3.3.3 Matching Conditions

Mass and energy conservation provide two sets of equations. A third set

is derived from imposing the Kutta condition at the trailing edge (this is

for subsonic relative exit flow; for supersonic flow, the choking condition

is used instead).

Subsonic Relative Exhaust Flow

The linearized equation for mass conservation gives

[UP" + pu'] n = [UP" + pu_] m (32)

where the subscripts indicate evaluation of the quantities in the square

bracket on the upstream and downstream sides, respectively, of the actuator

disk.

The linearized equation for energy conservation along with the adiabatic

flow relation, p/pY = constant, in a frame of reference fixed to the Blade

yields:
p

" = [P---+ U u" + V v ]m (33)[_+ U u" + V v ]n 0

If a stationary or laboratory coordinate system is used, the rotor energy
must also be included.

Finally, the Kutta condition requires the flow to leave tangent to a

trailing edge. Since the unit vector normal to the exit stream is given by

(-sin 8 Sx + cos 8 _), the Kutta condition gives

[_" " (- sin 8 e + cos 8 e )]
x y m

--0

or

[-u" sin B + v" cos B]m = 0 (34)

In general, the quantities both upstream and downstream will consist of

a forward-propagating sound wave, a backward-propagating sound wave, and a

vorticity wave. However, upstream of the first blade row there is no vor-

ticity wave (QI = 0), and downstream of the last blade row there is no

backward-traveling sound wave (B2N+I = 0), where N is the number of stages in

the turbine. Since F 1 _ i, that leaves 6N unknowns. However, there are 2N
blade rows with three equations at each blade row. Therefore the problem can

be solved.

Application of the matching conditions (32) - (34) to the first blade

row gives the following equation set which can be expressed in matrix form

as:
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Then,

(DI)

F

B 2

Q2

= (AI) B1

Q1

(F1 = i, Q1 = 0) (35b)

and

-i

where DI

B2 = (Dil AI) B1 (38)

Q2 Q1

is the inverse of DI, that is in Dil D 1 gives the identity matrix:

11o01D1 ffi 0 1 0

001

Similarly, for any blade row it can be written:

(n)
n Bm

%
= (An) I:!lm=n+l (39)

and lFnBm =(Dnl An) Bn

Qm __%
(40)
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For the last (2N) blade row, F2N+I = T and B2N+I = O, therefore

Q2N+I

F2N

B2N

Q2N

- -i (D21A2) (DIIAI)= (D2N1 A2N) (D2N_IA2N_ I) ....

i

BI

0

(45a)

TCII TCI2 TCI3

TC21 TC22 TC23

TC31 TC32 TC33

i
B 1

O

(45b)

(TC) provides the transition coefficients relating the transmitted and

incident perturbations.

The second row of _5b) shows that

TC21

B I = -T--_22

whereupon, it can be seen that

TC21 .TCII TC22 TCI2)

A computer program to utilize this matrix-inversion technique can be

found in Appendix A, along with a flow chart and typical output.

(46)

(47)
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Supersonic Relative Exhaust Flow

When the relative flow exiting from a b±ade row becomes supersonic, the

Kutta condition is replaced by the choked-flow condition. A discussion of

application to disturbed flow at a blade row can be found in Reference 16.

The interaction with the shock that occurs due to the locally supersonic

conditions is considered separately in Section 3.4.

Supersonic flow actually implies two separate governing equations -

one upstream of the blade row and the other downstream. The downstream

condition is analogous to the Kutta condition in that it determines the

relative exit angle. The Kutta condition states that the relative flow angle

leaving the blade row is given by

-i

= cos (do/t) = constant

where do defines the cascade throat and t the blade-to-blade pitch (see

Figure 8). However, when the critical pressure ratio is exceeded, the flow

angle for low supersonic Mach numbers is given by:

B = cos A* (48)

where A/A* is defined as in the usual sense (Reference 17):

A* = 2 +_+i
F y+l

exp e2(y_l)] (49)

The one-dimensional area function defined in (49) is valid only for

small supersonic Mach numbers because it ignores shocks. The flow turning

provides the extra area required to pass the flow defined in the throat.

However, the downstream choking condition and the mass conservation

equation cannot both be used simultaneously as the former implicitly contains

the latter and the resulting equations are no longer linearly independent.

The upstream choking condition requires that the corrected mass flow be

dependent only on the upstream stagnation parameters (Reference 16). That

is:

C RTo
Ap ° -_- = constant

or

oU '_° = constant (50)
Po
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_ --"__ _ -- c°s-a d-_-5_

Cascade

Figure 8. Turbine Cascade Nomenclature.
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where: _ = mass flow rate = pUA

07_ qT_ &L PAG_ I$

,',_'_ " _ _'_ QUAI FFY

A = cross-sectional area

Po = stagnation pressure

To = stagnation temperature

R = gas constant

¥ = ratio of specific heats

Using conventional gas dynamic relationships and taking the logarithmic

differential yields:

2 u" T" T+l _ = 0 (51)
II T y-i

where: T' = temperature perturbation

= +

Mab s = absolute flow Mach number

After some further simplification and assumption of isentropic flow (see

Reference 3), the following equation in u' ' p', v and results:

7m! (M ei + _ - (r+1_ cos -
T bs -I) p Mabs U

V !

"(7+1) (--Va)Mabs sin _]V = 0 (52)

where _ = absolute flow angle.

Proceeding as in the subsonic flow case, with equation (52) replacing

equation (34), the (An) and (Dn) matrices assume the following form:

k /k

(Mnx+COSSFn) (Mnx-COSOBn) nYK n

[l+MnCOS(an-@Fn)] [l-MnCOS(_n+@Bn)]

A31 A32

(An) =

n

M (k /k )-M (k /k )
nx ny n ny nx n

K
n

A33

(53)
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where

2 2_
A31 = (y-l) (Mnabs-l) + _- coSOFn-(Y+l)MnabsCOS(¢n-0Fn)

nx

A32 = (y-l) (_abs-l) _ M-2_coSSBn+(Y+l)MnabsCOS(#n+SBn)
nx

2_ (kyn/kn) Lrkyn kxn 12_1

A33 = M-- K (Y+l)Mnabs I cOS_n - _-- sin
kn nnx n (54)

• Kn

and a a a kmy/k m

n (Mmx+COSeFm) _a (Mmx-C°SeBm) an Km

(Dn) = Pn 0--n -MmC°S (SBm_gBm mx k my-- +M cos (_Bm-eFm
Pm m Om . m

K
m

o o 0

(55)

It is obvious that (Dn) cannot be inveeted any longer, and the solution

method used for the subsonic case cannot be utilized here. Note, however,

that (An) can be inverted. Hence, the solution can proceed from the last

stage towards the first, if all the blade rows are supersonic. That is,

i

B

0

(AI-IDI) (A2-1D2) ....... (A21D2N)

F2N+I

0

Q2N+I

(56a)

CTII CTI2 CTI3

CT21 CT22 CT23

CT31 CT32 CT33

F2N+I

0

Q2N+I

(56b)

Here (CT) is the transition coefficient matrix for an all-supersonic exhaust

flow turbine. Equation (56b) can be used to obtain

CT33

T = F2N+I = CTIICT33_CTI3CT31 (57)
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Unfortunately, most turbine configurations incorporating supersonic

exhaust flows do so only for the initial few blade rows. The matrices decouple

at each subsonic/supersonic interface, and neither (TC) nor (CT) can be

defined.

There are several alternative solution methods, including following

acoustic waves through successive interactions with blade rows. This ap-

proach is used later on to validate the matrix-inversion technique for single-

stage turbines. The implementation, however, becomes quite cumbersome and

complex for multistage turbines.

A generalized solution results from the realization of the fact that,

out of the six amplitudes involved at each blade, two are fully defined at

the first blade row (F1 = i, Q1 = 0). Guessing at one of the other four

amplitudes, the other three unknowns can be obtained utilizing the three

matching condition relationships at the first blade row. Since F2, B2,and

Q2 are now known, F3, B3, and Q3 can be found by using the relationships at

the second blade row. Finally, F2N+I and Q2N+I are calculated. Since an

anechoic termination is assumed, B2N+I _ 0. If the computed value of B2N+I

is not zero, a second iteration is made through the turbine. Note that this

guessing routine allows for solutions of nonanechoic terminations. It is

sufficient to define the relationship between F2N+I and B2N+I due to the

termination. Then the computation loop-escape condition becomes (B2N+I/

F2N+I) convergence to the ratio determined by the termination rather than

B2N+I = O.

Implementation of this solution routine is made somewhat complex by

supersonic exhaust blade rows because only two equations are available to

define downstream quantities. Therefore it is necessary to start a new guess

at each supersonic blade row. The solution scheme is outlined in Appendix B,

along with a time-share program listing and typical output. An interesting

result of supersonic-flow blade rows is that the sound Waves move upstream

slower than the flow moves downstream,and therefore negative values of the

backward-traveling wave become possible.

Validation of Multistaging Approach

An acoustic wave incident on a multiblade-row vehicle will generally

give rise to a system of acoustic and vorticity waves which can be evaluated

in two different ways. The current, multistaging analysis postulates an

"equilibrium" state solution; wherein, all the reflected and transmitted

acoustic waves are combined into a pair of forward- and backward-travelling

acoustic waves in each interblade-row space and the associated vorticity into

a vorticity wave downstream of each blade row. The other approach considers

each blade row interaction as an isolated blade-row impingement and then

follows the resulting reflected, transmitted, and vorticity waves through

successive interactions with adjoining blade rows. The solution in the limit

of infinite interactions should approach that of the equilibrium model. This

has been verified for a number of cases ranging from low to high pressure

ratios, zero and nonzero acoustic wave incidence. Two representative compar-

isons are provided in Table I for the first stage only of the HLFT IVA low
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pressure turbine tested in NAS3-19435. Case I corresponds to the lowest

pressure ratio tested for the full three-stage turbine, while Case II corre-

sponds to the highest pressure ratio, at which the first stage was very

nearly choked at 100% speed. The first column provides the acoustic wave

amplitudes for the isolated blade-row interaction in which only the trans-

mitted wave at each blade row is preserved; the reflected and vorticity waves

are discarded immediately after the interaction. The second column gives the

amplitudes if the vorticity wave from the first blade-row interaction were

also preserved and made to interact with the next blade row. The succeeding

columns contain the amplitudes due to successive interactions of the re-

flected wave from the second blade row. The last column gives the values

predicted by the multistaging computer program. The convergence of the

successive interaction solution to the multistage values is surprisingly

rapid, particularly for low pressure ratios. For example, the final trans-

mitted wave amplitude reaches a value of 99% of the multistage solution after

only two interactions at the lower pressure ratio. At the higher pressure

ratio, the transmitted wave amplitude reaches 92% of the multistage value

after two interactions, and 96% after four.

3.3.4 Energy Transmission

The energy transmitted can be computed using the results of Blokhintsev

(Reference 18). The energy density c is given by

,2

e = n____(a+Vabs._ ) (58)
P

pa

where Tab s is the absolute flow velocity and _p the unit vector normal to the

wave front. Also, the intensity flux vector _ is given by

A

= e (aep+Vabs) (59)

Only the axial component is of interest here

^ -_

I = e(aep+Vabs).$X X

or

also

I = e(a coseF+U)X

.9.

Vab s = US +(V+WR)_x y

where
WR is the rotor wheel speed
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therefore I
X

or

p.2

=-7-_ [a+Uc°SSF+(VT+WR)sin8 F] (a cOSGF+U)

0a

.2

= P____ [l+MxCOSeF+(My+_) sln% F] (coseF+M x)Ix pa (60)

The transmission loss through the turbine is then given by

TL = iO loglo

I

TL = I0 lOgl0 T2

(Ix) incident

(Ix) transmitted

2

PTaT [l+Mlx cos@ I + (Mr +M_) sin@l]
.ky li'_

2 [l+_x Cos@ T + (_%y+_R) sin@ T] X
01a I

(cos@ I +Mlx)

(cos@T + )
(61)

where M R = WR/a, the blade tip Mach number, and the subscript T would denote

conditions at exit from the last blade row, i.e., T = (2N+I), and I those at

inlet to the first blade row, i.e., I = i.

For a first approximation, annular spinning modes can be treated as

plane waves propagating between infinite p±ates - as was demonstrated by

Morley (Reference 19).

• Mean Circumference = 2_r*

Thin Annulus

Y

k

Sin

ore=3

i
,_ _ klCos 81

38



A plane wave approximation for m = 3 spinning lobe is provided as an

example. The annulus is assumed to be cut and straightened out (unwrapped),

so that the cylindrical walls become a plane sheet. Continuity in the

circumferential (y) direction requires that the wave pattern be repeated

every 2_r* (mean circumference); that is,

) = 2_r*
M(sin 0

I

m_ m
or sin e = --I 2 -TWr= kr'"

or el sin-i m= (kT)

(62)

where m = circumferential lobe number

k = wave number

r* = root mean square radius

= [ (tip radius)2 + (hubradius)2]2

1/2

When more than a single dimension is involved, the wave number k is the root

mean square of the wave numbers associated with each of the dimensions, e.g.
in the axial and circumferential directions.

Note that m = o corresponds to a plane wave propagating axially down the

annulus and is the only cut-on mode for kr* < i. As soon as kr* exceeds one,

the first pair of spinning modes (one corotating and one counterrotating)

appear - as was indeed observed during the NAS3-19435 tests.

Each mode is associated with a different incidence angle, and the corre-

sponding transmission loss can easily be computed using (61). The question

now arises as to the appropriate energy assignment. Equal energy distri-

bution between all cut-on modes has been frequently postulated in fan noise

and treatment work. Experimental observations indicate that this is not an

unreasonable distribution for symmetric sources particularly. The siren tone

injection into the turbine plenum during the NAS3-19435 tests corresponded

closely to a point-source placed in an annulus. A simple, no-flow, analyt-

ical modeling (Appendix C) of the resulting duct coupling can be used to show

that the energy distribution is given by

1
E = (63)

m (f2 _ f 2)1/2
c
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J

where Em = energy assignment to m th mode

f = frequency of interest

fc = cut-on frequency for m th inverse

An obvious outcome of this frequency inverse dependence is that all the

available energy is biased towards a mode just cutting-on. But eI for this

mode is approximately 90 ° at cut-on, almost ensuring complete reflection at

the blade row. Hence, cut-on should be associated with a sudden increase in

transmission loss. This is not inconsistent with observations made during

NAS3-19435, as will be shown in Section 4.

Once the energy assignment has been made, it is a simple matter to

compute the summed transmission loss for any given frequency. The computer

programs in Appendices A and B provide both the individual transmission

losses for each cut-on mode and the summed transmission loss.

3.4 SECONDARY EFFECTS

3.4.1 Duct Termination and Area Chan_es

The area variations encountered in the turbine tests of NAS3-19435 may

be modeled as shown in Figure 9. There is a gradual area change from the

inlet plenum to the inlet casing (SI to $2); there are sharp area changes

associated with each blade row (S3 and $5) , and then there is a sudden expan-

sion as the exhaust flow dumps into the exhaust plenum (S6 to $7). Each area

discontinuity is associated with reflected and transmitted waves. The answer

being sought here is the effect on the transmission loss and, in particular,

the unique or spurious effects imposed on the data acquired during NAS3-19435.

The area changes associated with the blade rows are properly accounted

for in the analyses, but not the associated phase changes over the lengths

£4, _5' _6, etc. The multistaging analysis, for example, assumes negligible

change in phase over the interblade-row spacing _5" Since _5 = 1.31 cm for

the turbine of Figure 9, the actual phase change [angle in degrees = (spacing/

wavelength) x 360 ° ] would be about i° at i00 Hz and 18 ° at 2000 Hz, which

represent the limits of the frequency range of major interest. Hence the

assumption would be strictly valid only at the low frequency end.

The major impact would appear to be that of the area change at the

exhaust plenum. It will be shown that the reflected wave at this termination

is almost 180 ° out of phase with the incident wave for low frequencies and

has an amplitude almost as large, making the duct termination a pressure

node. Pressure measurements in this region would then indicate inflated

values for the transmission loss. The exact degree of pressure cancellation

at a given sensor is a function of the amplitude and phase of the reflected

wave, the wave number, and the distance to the sensor (£9 or £8 + £9)" To

our knowledge, there are no exact solutions available in literature applic-

able to this particular geometry. However, several approximate methods are

40



,-_
0 ._

0 0
_r,.)

t
r,- o

-r,t

_ t_

e_

° _

,-I _'J

F- °

A

_:._qT._AL PAGE _S
._ ....QUALrrY

_D

D_

hD

z=

c_

4->
C_

I

,-4

C_

4_

0

0
.i,.4
4_
c_

cd

<

0

0
-M
4_

®.d
_ m

-,-'t

m _

g

41



available, such as the strip theory modeling by Mani (Reference 20) which

includes flow effects, or the somewhat simpler no-flow models used to analog

area changes in ducts or a pipe radiating into space (see, for example,

Reference 21). A no-flow analysis is perfectly adequate here - as a demon-

strator.

Assuming, for the moment, a cylindrical duct of radius r discharging

into the plenum, the ratio of the reflected to incident wave can be written:

B6 (Ro - Poa/S6 ) + j Xo

F6 (Ro + Poa/S6 ) + j Xo
(64)

where Ro and Xo are the real and reactive components of the impedance at the
interface and S is the cross-sectional area.

In the limit that (S7/$6) is finite, and the wavelength is large com-

pared to the duct characteristic dimension, Ro = (Poa/S 7) and Xo = O. Then,

B6 S7 - S6

F6 S7 + S6
(65)

using the values for S6 given in Table II, and S 7 = 5160 cm 2, the following
results are obtained:

High Pressure Turbine

One-Stage Low Pressure Turbine

B6
= - 0.80, ATL = 14 dB

F6

B6
--= - 0.62, ATL = 8.4 dB
F6

Three-Stage Low Pressure Turbine ATL = 4 dB

The _TL is the artificial increase in transmission loss due to pressure

cancellation at the downstream sensors. Note that S 7 actually varied from
5160 cm 2 at the exhaust duct termination to about 13700 cm 2 at the scroll

collector. Hence the ATL tabulated above are minimum increases in the trans-

mission losses.

42



Table II. Exhaust Duct Termination Effects.

Turbine Configuration

High Pressure

1 Stage, Low Pressure

3 Stage, Low Pressure

Exhaust Duct
Area, S6

(cm2)

562.5

1206.5

2387.2

Duct
Height
(cm)

3.81

6.60

12.45

Lengths, £, for Sensors (cm)

Wall Probe

K 5

19.05

14.73

K 6

16.51

12.19

K9 KIO

4.06 6.60

5.84 3.30

7.37 4.83

Note: $7 m 5160 cm 2 at the termination, but increased to about 13700
cm zat the exhaust scroll collector.

For the case of very large ($7/$6), the impedance can be considered the

same as that acting upon a piston mounted in an infinite baffle:

where

Po a
R = R (2 kr)
o S6

p a

X - o X (2 kr)

o S6

2 4 6
x x x

R(x) = (2)(4) (2)(42)'('6) + (2) ('4_2)(62) (8)

3 5

X(X) 4 [ x x x
= 7 -_ - (3z)(5) + (32 ) (52 ) (7)

...]

(66)

(67)*

and

B6

F6

R(2kr) - 1 + _ X(2kr)

R(2kr) + i + j X(2kr)

For example, using the truncated series representation of Equation 67,

B6(o)

kr = 0.2 gives _F6(o------V = 0.99 exp [j (170°)]

where (o) mean kx = 0.0

(68)

* See Reference 21, page 14G
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That is, the reflected and incident waves provide almost complete can-
cellation at the duct termination. At higher frequencies, the cancellation
is not as complete because of changes in both amplitude and phase:

kr = 2 gives
B6(o)

F6(o)
--= 0.554 exp [j (107°)]

The effect at the measuring station can be computed using:

B6(£) = B6(o) exp [j(-k£)]
(69)

F6(£) = F6(o ) exp [j(k£) ]

where £ = £9 = 4.06 cm for Kulite I0 (see NAS3-19435 Final Report, Reference

7) and (£8 + £9) = 6.6 cm for Kulite 9 in the case of the high pressure

turbine tests. It is obvious that these measurements were very nearly in the

pressure cancellation region. In contrast, the low pressure turbine trans-

mission loss data were obtained largely with wall-mounted Kulites (KS and K6)

for which £ was much larger: 12.19 to 19.05 cm. The values of £ for both

the wall and probe sensors are given in Table II.

Using either the assumption modeled by Equation (65) or the assumptions

modeled by Equations (67) and (68) suggests that the sensor locations and the

duct areas used in the NAS3-19435 tests should result in the spurious increases

in apparent transmission loss which were observed in the low frequency end. In

addition, either model also suggests that such distorted transmission loss

increases should be evident to a greater degree in the high pressure turbine data

because it has a more sudden expansion (larger area ratio). This is in agreement

with observations made during the tests, as is discussed in Section 4. The con-

clusion is that it is very easy to structure a test to measure wave patterns

generated by the geometry, rather than measuring real transmission characteristics.

The effect of the area changes on the inlet transducers is not as clear.

The reflected wave from the $2/S 3 interface reinforces the signal, but that

from the $2/S I interface provides a cancellation. Further, since £i is very

nearly equal to £3 in all cases, a good first estimate would be to assume a
zero net effect.

The preceding manipulations are strictly valid only for no-flow and

plane waves (81 = 0). The latter restriction might be the more severe of the

two. However, they clearly indicate a fictitious increase in the trans-

mission loss, at frequencies below the initial mode cut-on, for the data
measured in NAS3-19435.

It is clear that, in the case of combustor noise transmission in engine

configurations, the major area variation influencing the transmission loss

would be that at the core nozzle exit. The effect would be a nonzero B2N+ 1

9or nozzles such that (2kr) >> i. Even then, only a small decrease in the

turbine transmission loss will result. However, there will be a comparative-
ly large increase in the exhaust nozzle transmission loss which should not be

overlooked.
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There is also potential for a shift in the transmission loss spectrum

due to the "gooseneck" sometimes encountered between the high pressure turbine

exit and low pressure turbine inlet for high bypass turbofans. The gooseneck

is typical of the CF6 family of engines and involves a large increase in the

mean radius. The modal content of the acoustic energy propagating between

the two turbines will change, since the first spinning modes will cut-on at a

lower frequency (cut-on is computed using kr* = i, 2, .... along with a

Doppler correction for flow). That is, the sudden increase in transmission

loss characterizing modal cut-on could shift to lower frequencies.

3.4.2 Shock Interaction

Since turbine blade passages are not normally designed as converging-

diverging nozzles, the existence of supersonic flow results in shocks in the

vicinity of the blade passage--but only at the trailing edge, as illustrated

in Figure 10(a) (See Figure 21(c) of NACA RM EIK25 for Schlieren photograph

of such shocks).

The interaction of acoustic waves with shocks has been investigated

analytically by Landau and Lifshitz (Reference 22) for normal shocks and by

Moore (Reference 23) for oblique shocks.

In general, the weak disturbance field resulting from shock interaction
with an acoustic wave can be considered to include two components:

(a) an unsteady, isentropic, irrotational perturbation satisfying the

wave equation, i.e., a sound wave

and (b) a steady (relative to the flow), rotational perturbation of con-

stant pressure, i.e., a vorticity wave.

Strictly speaking, an entropy wave is also created (Reference 16). However,

the acoustic perturbations are assumed to be small and the shock weak (the

flow in turbine passages will rarely exceed M = 1.2). Under these circum-

stances, it would appear that the resulting entropy waves could be neglected.

As shows in Figure 10(b), Moore discusses the case of a shock overtaking

a sound wave (Problem A), and that of a sound wave overtaking a shock (Problem

B). The case of interest here corresponds to Problem A in his frame of

reference. Within the blade passages only the zeroth order mode, an axially

propagating wave, can be cut-on for the frequency range associated with

combustor noise. Referring to Figures 10(a) and 10(c), one can see that the

incidence angle _ between shock and acoustic wave can then be taken as

approximately zero. The case of interest here then corresponds to Problem A

in Moore's frame of reference with M _ 1 and _i = 0. Using the appropriate

results, the net effect is a weak refraction of the incident sound wave, as

shown in Figure ll(a) and (b). The associated vorticity wave occurs at

_3 _ _I/2 (approximately parallel to the shock in this case) (Figure ll(c)),

but the velocity and density effects are very nearly zero, even for Mach

numbers up to 1.5 (Figure ll(d)). The order of magnitude of the overall

effect would appear to be much smaller than that resulting from the actuator-

disk interaction and may be ignored for all practical purposes.
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4.0 THEORY/DATA COMPARISON

4.1 BACKGROUND/DATA ACQUISITION

An experimental investigation of the low frequency noise transfer

through aircraft engine-type gas turbines was conducted at General Electric

under NASA Lewis Research Center sponsorship (NAS3-19435). Details of the

test and the results obtained can be found in Reference 7. These data are

compared below with predictions made using the analysis of the previous

section. It is edifying to first obtain an understanding of the experimental

setup and the effects that might be unique to the facility used to obtain

the data.

The program objectives in NAS3-19435 were to (i) measure the acoustic

transmission loss of sound injected upstream of the turbine as a function

of the acoustic wave frequency and (2) compare these data with existing

theory in order to assess the validity of the theory. The plan adopted in

order to accomplish these objectives is outlined in Figure 12. Two turbines

were tested: a single-stage, high-pressure turbine (NASA core) and a

three-stage, low-pressure turbine. The design characteristics of these

turbines are provided in Tables III and IV. The high pressure turbine was

tested at two different inlet temperatures and the low pressure turbine in

a single- (first stage only) and a three-stage configuration. Data were

acquired at both choked and unchoked conditions.

The testing was conducted in General Electric's Warm Air Turbine

Facility (Figure 13). The sound source consisted of a high intensity siren

coupled to the inlet plenum through a transition horn and a radial-entry

port. The entry point was several diameters upstream of the turbine and

the sound first traversed through a diffuser section, flow-straightening

screens, and a converging section accomplishing a change from cylindrical

to annular flow path.

The sound level immediately upstream of the first blade row was measured

using Kulite transducers mounted flush with the outside wall. Four trans-

ducers (KI through K4) were employed in two axial pairings staggered about

180 ° circumferentially. The downstream levels were measured using two

"sound separation" probes (each probe has two axially spaced Kulites) also

staggered about 180 = circumferentially. The low pressure turbine configura-

tions also included one pair of wall-mounted Kulites (KS and K6). The

acoustic instrumentation and the turbine cross sections are displayed

schematically in Figures 14 and 15.

Data were acquired at the turbine operating points shown in the test

matrices of Tables V and VI. A range of siren frequencies was recorded at

each turbine operating point. Nominally, seven siren settings were used

(see Table V), which provided transmission loss information over a frequency

range of 83 to 3525 Hz since the second and third harmonics of the siren

tone were also readily discernible upstream in addition to the fundamental.

48



O_"J__" _ PAGE I2

' )i' r .. '_, ,_ JALY_"

o
•,-t tQ

tm

_..o_

Q)

m C 0 hl_

w

L
v

w

I _ ._
•M -M 0

tm 0

:J .¢o q._

,.t:: C._ ---em
0 _ 0

o

2

o

o _

0

t_ ._ o

o"0 O
o o_

a,

"!,'4

o

.o
0

tm
0

O_

rB

t-4

f:L

0
0
0

0
4._

0

4m
tfl

I1)

r/l

d

o
t,.i

49



• L

Table III. High Pressure Turbine Design Characteristics

(NASA Core Turbine).

Wt. Flow Function, p
O. 81

,,i

Loading, gJAH 1.66
U 2
P

Pressure Ratio (Total) 1.83

Speed, N//T 362

Stator Vanes 36

Rotor Blades 64

Radius Ratio 0.85

Tip Diameter (Stage Exit), (cm) 50.8

Table IV. Low Pressure Turbine Design Characteristics

(Highly Loaded Fan Turbine, HLFT-IVA).

w/f
Wt. Flow Function, p

Loading, _
EU-

P

Pressure Ratio (Totai)

Speed, N//T

Stator Vanes

Rotor Blades

Radius Ratio

Tip Diameter (Stage Exit) (cm)

1
o

3.52

1.73

i00

206

0.811

63.55

Stase

2

3.12

1.81

144

190

0.735

69.08

3

1.60

1.41

140

160

O. 663

73.18

Overall

2.70

4.72

204

5O



I I

C
| I

!
I

!

X

I

_L
°_

,s.-I

E_

bid
._,..[

Oi_iG[NAL PAGE I8
OF POOR QUALrl_

51



orward Frame Measurement F Aft

P1 ane \
-- 2.0

I
Measurement Casing Kulites-] r-_,, _

Planeo.o _ _
Casing I ff

' \

A ffi 593.58 cJ A ffi 2387,24 am 2

-_J (92 in. 2) (370 in. 2)

Frame

-- Strut

)
(a) HLFT-IVA Low Pressure Turbine, 3-Stage Build.
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Table VI. Low Pressure Turbine Test Matrix

(HLFT-IVA).

• Desigr Speed, N//-T= 204

• Flow Function, W/T/P = 1.57

• Inlet Total Pressure PTO = 275.8 kN/m 2

• Inlet Total Temperature, TTO = 422 K

% Design

Speed

50

70

90

i00

ii0

Speed

(rpm)

2100

2940

"3780

4200

4615

O- Repeat Point

Pressure Ratio (PT0/Ps2)

Single-Stage Build
1.6 1.9 2.2 2.5

X - - - X

X X X - X X

x x ® x x ®
x @ @ @ x x
X X X X X

Three-Stase Build
2.0 3.0 4.0 5.2

X

X X

x ,(_)

X X
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Data analysis techniques included very high resolution data reduction

and coherence analysis between upstream and downstream sensors in an effort

to unmask the siren tones downstream of the turbine. The latter was found

to be more successful. A typical coherent spectral comparison is shown in

Figure 16. The figure clearly shows large transmission losses for the 400

and 800-Hz tones, but a much smaller value for the 1200-Hz tone. The com-

parison of Figure 16 is on a SPL basis. A more meaningful result was

obtained by correcting the data fcr flow, specific impedance, and area to

arrive at the corresponding power levels (see Reference 7). The area

correction assumed zero-th order, radial-mode distribution, that is, constant

energy distribution from hub to tip. This has been found to be a reasonable

assumption for low frequency noise measured in an engine core (Reference 2).

Typical plots of the siren tone attenuation as a function of the tone

frequency are shown in Figure 17 for the high pressure turbine at design

point. The spectra display a very distinct, bilobed shape, with large

increases in attenuation below 100 Hz and above 2000 Hz and a secondary

peak between 350 and 400 Hz. This secondary peak was found to correspond

to cut-on of the first spinning mode. How this cut-on increases the trans-

mission loss has already been discussed in Section 3.

The data appeared to exhibit a fairly large amount of random scatter,

possibly as a consequence of duct-related phenomena and interference between

forward- and backward-propagating acoustic waves. The 2.54-cm axial spacing

between sensors was found to be inadequate to separate the two wave systems

because of the large wavelengths and high broadband "noise" levels. Ultimately,

the only viable option available was data averaging - use of large samples

and as many of the sensors as possible. The midlobe, however, remained

readily discernible, even for the low pressure turbine data where the siren

frequency corresponding exactly to the first modal cut-on was assiduously

avoided. Partly because the size of the midfrequency lobe was believed to

be a consequence of the asymmetric sound injection into the turbines, and

partly to facilitate comparison with the existing theory at that time

(1976), a bathtub spectrum shape was postulated as shown in Figure 18. The

attenuation spectrum was divided into three distinct regions as shown in

the figure: very low frequencies (below i00 Hz), midfrequency floor (200

to 1200 Hz), and high frequencies (above 1500 Hz). It was hypothesized

that there were mechanisms involved at the low and high frequency ends

which either invalidated the basic theoretical (actuator disk) assumptions

or involved phenomenon not considered in the analysis. The bathtub floor

was found to correspond closely to the actuator-disk theory. Coincidently,

the floor spans the major frequencies of interest for combustor noise. The

frequency span of the floor could easily be extended to 2000 Hz without any

loss of generality, as is obvious from Figures 17 and 18.

A single value of transmission loss corresponding to the floor was

obtained for each turbine operating point by averaging the attenuation

values of all siren tones within the midfrequency region. This technique

proved to be remarkably successful in collapsing the data and revealing

trends. The collapse achieved is shown in Figures 19 through 21 for the

5B
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turbines tested. The plots* show the floor transmission loss as a function
of the turbine pressure ratio, with the turbine speed as a separate parameter.
Clearly, the turbine speed is not a significant variable. The data trends
did indicate a pressure dependencyin that the attenuation increased (very
slightly) with the pressure ratio for subsonic flows, flattening out, and
even decreased by a small amount for choked flows. However, the total
variation observed for any turbine was about 3 dB or less over the entire
test matrix. The test matrices for these component tests represented far
greater excursions from design than would be encountered for turbines
installed in engines. Hence, the data trends would suggest very minor,
certainly less than 3 dB, changes in midfrequency transmission loss over
the normal operating range for aircraft engine turbines.

These figures also show the analytical predictions using the actuator-
disk theory of Reference 3. The prediction involved two major assumptions
in addition to the actuator-disk modeling. First, only the plane wave
propagating axially down the duct was considered (8I = 0); spinning modes
were ignored because of the low frequency nature of the sound. Secondly,
it was assumedthat the attenuation due to each blade row could be computed
separately with anechoic terminations both upstream and downstreamand the
individual attenuations were additive in arriving at the attenuation for
the turbine. Both assumptions were necessary in order to maintain a viable
mathematical model and extract a solution. Comparison of the predictions
with the data trends in Figures i9 and 20 left little doubt that the existing
analysis needed further modification. Figure 19 shows remarkable agreement
for pressure ratios below choking, but the pronounced dip in predicted
attenuation above choking was not matched by the data trend, and a 3-dB
discrepancy resulted. Further, while good agreementwas #ound for single-
stage turbines in the subsonic flow regime, the three-stage turbine data
were overpredicted by 3.5 to 7 dB proceeding from the lowest to highest
turbine pressure ratio tested. The question then became: could the actuator-
disk theory be modified sufficiently through recognition of higher order
(spinning) modes, multistaging, etc., to obviate the discrepancies noted
above and explain the observed frequency spectrum?

4.2 COMPARISON OF THE DATA WITH THE IMPROVED THEORY

The predictions used here were generated using the computer programs

listed in Appendices A and B. The program in Appendix A can be exercised

only for subsonic turbines, while that in Appendix B is a generalized

program which can accommodate both choked and unchoked blade rows. However,

the Appendix A program provides an exact solution and is considerably

cheaper to execute.

The values are slightly different from those shown in Reference 7. The ASPL

to APWL conversion in Reference 7 was made using average values (one for

each turbine) of the specific impedance and Mach number in order to facili-

tate data reduction. The data shown here have been corrected using the

exact values for each different operating point.
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Figures 22 and 23 provide data comparisons with predictions using the

multistaging program of Appendix A for the single-stage, high pressure

(NASA Core) turbine. The prediction in Figure 22 uses an equal energy

distribution and is seen to skim along the bottom of the data points.

There is an increase in attenuation at each modal cut-on frequency. The

effect of the first one is most pronounced; suddenly two-thirds of the

incident energy is transferred into the two new waves that are completely

reflected. At the second modal cut-on, two-fifths of the incident energy

is transferred into the new waves; therefore, the indicated increase in

transmission loss is correspondingly smaller. As the number of existing

modes increases, the effect of subsequent cut-on naturally diminishes. The

variations in the measured transmission losses, however, are somewhat

larger than predicted.

A logarithmic scale was used for the frequency in Figure 22 and through-

out NAS3-19435 in order to facilitate comparison with one-third-octave band

spectra characteristically utilized in the analysis of combustor noise. It

is more instructive to evaluate these turbine test results on a linear

frequency scale for current purposes. Such a linear plot is shown in

Figure 23, along with a prediction made with the frequency inverse energy

assignment discussed in Section 4. This energy distribution model biases

the available acoustic energy into the highest cut-on mode and, in fact,

assigns all the incident energy to a new mode at the instance of cut-on (f

= fc). [he associated propagation angle, 01 = ±90 °, almost ensures complete

reflection and therefore infinite transmisslon loss. The program assumes a

more reasonable finite value of 20 dB at this point. The prediction can be

seen to be in very close agreement with the measured data, particularly in

picking up the increased transmission loss points due to modal cut-on.

Filled-in data point symbols in the figures denote masking of the downstream

tone by broadband noise. Hence the actual transmission loss was at least as

much as shown by such a symbol, but it could have been signlficantly higher.

The good match between the data and saw-toothed prediction implies

that the apparent scatter in the data about the "mean" bathtub floor was,

in part, a manifestation of a modal cut-on, due to asymmetric noise injection,

and not a random error in the measurements. The fact that greater scatter

was observed for the low pressure turbine data (see Figure 24) than for the

high pressure turbine data provides further verification of this thesis.

Because cut-on occurred earlier in the low pressure turbine as a consequence

of the larger mean radius there would, therefore, be more cut-ons over a

given frequency range. The large jump associated with the first modal cut-

on is obvious in the high pressure turbine transmission loss spectra but

conspicuous by its absence from the low pressure turbine data only because

the onset became apparent during the testing and was carefully avoided by

moving the siren to adjacent frequenc.=s. It was recognized then, and is

emphasized here, that the prominence of the cut-on effect in the test data

was most probably due to the method of sound injection into the turbines.

A symmetric sound source, such as provided by aircraft engine combustors,

should result in equal energy modal distribution and a flatter transmission

loss spectrum such as shown by the solid line in Figure 22.
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Recognizing the influence of the modal cut-on phenomenon in the test

data, a case could be made for the extension of the bathtub floor to 2500

Hz, or greater, from the original 1200 Hz used in NAS3-19435. The gradual
increase in transmission loss for frequencies above 3000 Hz could be attributed

to the diffraction effect discussed in the flnite-chord modeling of Section

3.2. The increase in transmission loss at the very low frequencies has

been shown to be a spurious effect due to the location of the exhaust sensors

near the turbine exhaust duct termination. That is not to say that there

will not be any increase in the very low frequency transmission loss for a

gas turbine engine, merely that any such increase will probably be due to

the exhaust nozzle, not the turbines.

The following figures provide comparisons of the predicted and measured

transmission loss variations with pressure ratio and speed. The measured

transmission losses represent the bathtub floors for the test matrix points,

as discussed earlier in Section 4.1. Each predicted value corresponded

to the asympototic transmission loss floor of the spectrum for frequencies

above the first cut-on. For example, referring to Figure 22, the trans-

mission loss at design point for the NASA core turbine would be 7.2 dB.

Figure 25 shows the results for the single-stage configuration of the

low pressure turbine. There is very close agreement between data and

measurement, including the small increase with pressure ratio before the

onset of choking and the slight decrease for pressure ratios higher than

critical. In contrast, the isolated blade-row predictions using only the

axial plane wave had indicated a very large decrease in transmission loss

above choking (see Figure 19). The difference is mainly due to the incor-

poration of the spinning modes into the current prediction method.

On the other hand, the improvement in the theory/data comparison for

the three-stage configuration (see Figure 26) is a consequence also of the

multistaging analysis wherein the influence of adjacent blade rows was

included. The predicted transmission loss is of the same order as that

measured: i0 dB. The data do indicate a small increase, about 3 dB,

between the 2.0 and 5.2 pressure ratios, but only for speeds other than

design.

The data for the high pressure turbine are compared with the new

theory in Figure 27. Both the hot and the cold inlet data show agreement

with theory. As in the ease of the single-stage, low-pressure turSine, the

slight increase in transmission loss with pressure ratio below choking and

decrease above choking is reproduced.

In brief summary, the inclusions of higher order modes and incorporation

of the interactive influence of adjacent blade rows into the actuator-disk

model provided the critical elements to successfully explain the trends in
the available data.
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5.0 USE OF THE THEORY AS A WORKING TOOL

5.1 CONCEPTUALIZATION

The basic mechanism behind low frequency noise attenuation by gas tur-

bine blade rows and the governing equations for an actuator-disk modeling

were first proposed by R. Mani as part of an unpublished study for the dis-

charge reflection coefficient from a blade row. Bekofske extended the theory

to include Mach number changes and flow turning across the blade elements

and proposed a solution involving isolated blade rows. His published work

(References 3 and 8) included a computer program to effect the solution.

This isolated blade-row theory ultimately contributed to the development of

General Electric's Unified Line prediction method for gas turbine engine

combustor noise (Reference 2). However, comparison with component data

revealed some shortcomings in the theory and the limitations of the actuator-

disk model were not clear. The finite-chord model of Section 3 demonstrated

the correctness of the actuator-disk assumption for the frequency range of

interest for combustor noise. The theory/data comparisons of Section 4

provided validation of the refinements proposed in Section 3 to the basic

theory. The computer programs of Appendices A and B provide the working

tools required to implement the theory. A brief explanation of these multi-

staging, multimode programs is given below in 5.2. Detailed descriptions and

listings can be found in the appendices.

The computer programs are really the only accurate means of defining the

low frequency noise transmission through a given turbine. It is recognized,

however, that occasionally a need arises to make "quick and dirty" assess-

ments of a given system with only the information available in a preliminary

design cycle deck. Section 5.3 suggests some simplifications and approxi-

mations that lend themselves to "back of the envelope" type calculations.

Together, Sections 5.2 and 5.3 constitute the working charts that were

the second objective in this program.

5.2 COMPUTERIZED PREDICTION

The two computer programs in the Appendices are in _ORTRAN and written

for time-share usage. The basic flow chart used is shown in Figure 28. The

input required is shown in Table VII and consists of the axial flow velocity,

absolute flow angle, wheel speed (in the case of a rotating blade row),

static pressure, and static temperature upstream and downstream of each blade

row. This information is conventionally available for at least the engine

"design" operating point from the turbine designer. Off-design information

is a little more difficult to arrive at. Fortunately the available evidence

suggests very little change in the transmission loss over the normal operating

range. Also, the turbine tip radius and hub/tip ratio must be specified,

along with the number of stages (up to ten total). The program can be run in

?2



M(_DMLT Flow Chart

Input:

Compute:
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Figure 28. Flow Chart - Multistage, Multimode Computer Program.
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an isolated blade-row mode by specifying zero number of stages; the program

will then faithfully reproduce the results of the previous published computer

programs (References 3 and 8).

The program starts with the lowest specified frequency and computes the

number of cut-on modes, the energy distribution, the equivalent plane-wave

incidence angle, the transmission loss associated with each spinning mode,

and finally the summed transmission loss for that frequency. The frequency

distribution specified in the program is the center frequencies for the one-

third-octave bands from 50 to 4000 Hz. However, this can be changed very

conveniently to any other frequency distribution, for example, the siren tone

frequencies from NAS3-19435.

The most important frequency is the first modal cut-on and this is

calculated and printed out using the inlet mean radius. The transmission

loss at this point exhibits a sharp spike, and the subsequent values of

transmission loss register a significant increase as shown in Figure 29,

which corresponds to the input of Table VII. The transmission loss below the

cut-on frequency corresponds to the axial plane wave only and is 1.5 dB

in the example shown. The loss above the cut-on is controlled by the spinning

modes and levels off at 9.5 dB.

Equal energy distribution is specified in the two computer programs.

This can be changed to any other desired energy distribution, including

frequency inverse, as indicated in Appendix A. The differences between equal

energy and frequency energy distributions have already been discussed. The

latter gives prominent spikes at each cut-on frequency. The height of each

spike will depend on the assymmetry of the source: a line source giving equal

values for each spike. A symmetric source, such as an annular combustor

arrangement, probably will result in rapidly diminishing spikes. Whether

these spikes will be discernible in broadband combustor noise spectra remains

to be seen. It may be possible to use very high resolution (narrowband)

analysis to detect the modal cut-on defects in the transmitted combustor

noise spectrum in the exhaust nozzle. Also, the cut-on phenomenon could

diffuse over a wide frequency band due to viscous effects, random flow

variations, or "soft" duct walls. Cut-on for fan noise has indeed been

observed to be a diffuse rather than discrete frequency phenomenon. Some

clarification may be provided by the results from CF6-50 tests now proceeding

under NASA Lewis funding (ECCP III, NAS3-19736).

It should also be recognized that turbine area, and therefore mean

radius, generally will increase proceeding downstream. At the same time the

static temperature will decrease. The cut-on frequency is proportional to

(a/r*), and therefore will also decrease. This will not only contribute to

the diffusion ol the first cut-on spike, but also will mean a sudden shift

to a lower frequency in the case of a gooseneck between high and low pressure

turbines, as found in the CF6 family of engines. The investigator may prefer

to use the radius and hub/tip ratio downstream of the gooseneck in the

computer program instead of the high pressure turbine inlet values. These

dimensions are used to compute the cut-on frequencies and for no other purpose.
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5.3 APPROXIMATE ESTIMATION OF THE TRANSMISSION LOSS

The computer prediction methods were parametrically exercised for a

number of different aircraft engine turbine systems (Table VIII) in an effort

to discern trends and simplifications that could be used in a semiempirical

prediction technique. The net outcome was the prediction spectrum shown in

Figure 30(a). The transmission loss for frequencies below first cut-on is

constant, corresponding to eI = 0. Then at f = fc, the loss increases to

i0 dB, which represents a mean value obtained using equal energy distribution

for multistage turbines. This value will, of course, be higher in the case

of an asymmetric source. The maximum value indicated by the test data is

20 dB. For frequencies higher than fc, the transmission loss decreases to a

value somewhat below a final asymptotic value which is attained with a small

jump at the second cut-on.

The first cut-on frequency is clearly the most crucial element here

because the variation in the flat part of the transmission loss spectrum is

fairly small from turbine to turbine. Figure 30(b) provides a convenient

method of estimating this frequency given the mean turbine radius and static

temperature. The inlet axial Mach _umber is assumed to be 0.3. The Mach
number correction is actually l_-Mx; higher Mach numbers result in lower

cut-on frequencies.

In general, the transmission loss below the first cut-on is very low

(5 dB or less). Therefore, a small turbine would offer little resistance to

the transmission of peak combustor noise levels which, it is generally

accepted, occur near 400 Hz for current engines. For example, the turboshaft

engine turbine system used in the study (Table VIII) will induce only 3.2-dB

transmission loss below 1350 Hz because of its size. The predicted trans-

mission loss is shown in Figure 31. It is interesting to note that an engine

(core noise) data correlation using combustor source noise parameters col-

lapsed the available data along two lines as shown in Figure 32 (Reference

2). Comparison with the component data line suggests much lower overall

transmission loss for the three turboshaft engines than the turbojet and

turbofan engines. One of the obvious differences is the exhaust transmission

loss due to the nozzle, and flow is much lower for turboshafts. The other

difference is that all three of the turboshafts in Figure 32 were very small

engines and would have turbine transmission loss spectra similar to that

shown in Figure 31.

Table VIII suggests that 9 dB is a good value for the f > 2f c asymptotic

part of the transmission loss spectrum. Keeping in mind that the frequency

range of interest for combustor noise is normally below 2000 Hz, a constant

value of 9 dB above 2f c would result in less than ±l.5-dB error for the

turbines in Table VIII which encompass a very wide range of variables.

The transmission loss below cut-on is defined by Figure 33. The loss

actually decreases with pressure ratio and Mach number for multistage turbines.

The reason for this, and the constant asymptotic value for f > 2f c, lies in

the influence of upstream blade rows on the reflected upstream-propagating
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waves from downstream rows. High pressure ratios cause almost complete re-

flection at upstream rows and almost total restoration of the upstream-

propagating energy to the downstream direction. In fact, there can be no

upstream transmission of acoustic energy through a choked blade row. On the

other hand, blade rows operating with small pressure drops will permit two-

way transmission of the acoustic energy. The net effect for turbines having

two or more stages is increased transmission loss at low pressure ratios.

Figure 25 is recommended for predicting single-stage turbine transmission loss.

Finally, the data suggest that the value between fc < f < 2fc is

approximately two-thirds of the difference between the asymptotic and axial

plane-wave values. That is, if the asymptotic value of the transmission loss

is 9 dB and that for @I = 0 is 3 dB, the value between fc and 2f c should be
taken to be 7 dB.

The above described approximate method of estimating turbine transmission

loss is summarized below. The intent of the procedure is to generate a trans-

mission loss characteristic such as the one shown in Figure (30a) for a

specific turbine design.

Turbine Transfer Loss Approximation Procedure

I_M
x a

i. Determine fc from fc = 27 r

.

.

where f = turbine cut-on frequency
c

M = turbine inlet Nach number
x

a = turbine inlet speed of sound based on inlet

static temperature

r = turbine mean radius

(Note that Figure (30b) shows calculated values of fc for

Mx = 0.3).

The value of TL (transmission loss) at fc will be i0 dB

or more, depending on source symmetry as discussed in the

first paragraph of Section 5.3. The potential effects of

a gooseneck transition between high and low pressure tur-

bines should be considered here, as discussed in Section 5.2.

At frequencies above f = 2f^, TL is 9 dB for a multistage

turbine, and is determined _rom Figure 25 for a single stage

turbine.

At frequencies below f = fA, TL is determined from Figure 33
as a function of the exit _ach number from the first blade

row.
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.

Do

The constant value of TL in the range above fc and below 2f c

[referring to Figure (30a)] can be estimated to be 2/3 of the

way between No. 2 and No. 3 values determined above.

A transmission loss spectrum similar to Figure (30a) can now

be drawn for the specific turbine design being evaluated.

It is important to remember that this procedure yields only the turbine

transmission loss. The transmission loss through the exhaust nozzle can also

be an important consideration for gas turbine engines, particularly turbojets

and turbofans. A fuller discussion of exhaust nozzle transmission loss can

be found in Section 2.4 of Reference 2. Briefly, the loss can be modelled as

a transmission loss, due to flow changes at the exhaust nozzle and through

the jet(s), and a radiation loss, due to passage of the acoustic wave from a

duct into open space. Classical analysis of the latter suggests that this

part is negligible except for nozzles with characteristic dimensions very

small compared to the acoustic wavelength. This is not usually the case

except for very low frequencies. The transmission loss part postulates the

same mechanism, specific impedance, and Mach number discontinuities as used

in the turbine blade-row transmission modeling. A closed-form solution can

be obtained for axial flow and OI = 0 and is given in Reference 2. A chart

is shown in Figure 34(a) for the total loss proceeding from inside the

exhaust nozzle to ambient conditions. The computer prediction programs were

used here to generate the convenient chart in Figure 34(b) for the transmission

loss due to changes in the flow through the exhaust nozzle. The effect of

higher order modes is included. This chart defines the exhaust nozzle trans-

mission loss as a function of the temperature ratio across the nozzle.
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6.0 CONCLUSIONS

Two theoretical mode]s were presented to describe the transmission of

low [requency noise through aircraft engine turbines. The somewhat comply,x,

finite-chord analysis indicated that the simpler actuator-disk analysis was

valid for frequencies as high as 0.4 to 0.5 of the blade passing frequency.

In essence, it meant that the simpler model was adequate over the entire

frequency range of interest for combustor noise. It was shown that multiple

blade row and spinning mode considerations also had to be introduced into the

analysis in order to fully explain the transmission through the blade rows.

Interaction of acoustic waves with turbine blade passage shocks was found to

be a very weak, second-order effect.

The improved theory demonstrated that turbine transmission loss spectrum,

in the midfrequency range (200-1200 Hz) was indeed flat as postulated by the

floor of the bathtub spectral fit to the data of NAS3-19435. The scatter in

the data about this floor was found to be due to higher order mode cut-ons and

a biased energy assignment because of the assymmetric sound injection. Also,

the flat transmission loss apparently extended to 2000-2500 Hz. Diffraction

by the turbine blades was probably responsible for increasing the trans-

mission loss at higher frequencies, giving one end of the bathtub spectrum.

The other end of the bathtub, the rise at very low frequencies, was shown to

be a spurious effect introduced by the location of the downstream sensors at

a pressure cancellation point.

The theory suggested a step function type of transmission loss spectrum,

with the jump occurring at the first modal cut-on frequency. The attenuation

below this frequency was predicted to be constant (with frequency) as would

correspond to the transmission loss associated with the axial plane wave

alone. This value would vary from about 5 dB to 1 dB, decreasing with

pressure ratio for multistage turbines. The transmission loss (prediction)

for frequencies greater than the cut-off frequency was found to vary between

(9 ± 1.5) dB, independent of the number of stages or turbine pressure ratio.

The first cut-on frequency, which is inversely proportional to size,

appeared to be a critical element in the transmission loss since combustor

noise generally peaks in the vicinity of 400 Hz. In particular, small turbo-

shaft engine turbines would s_!ffer since the step jump to the 9-dB asymptotic

value is delayed to beyond i000 Hz. Turbojets and turbofans should exhibit

higher transmission losses, not only due to earlier cut-on, but also because

of higher losses at the exhaust nozzle induced by accelerating flow.

The exhaust nozzle and turbine transmission losses were computed

separately and independently. It should be a fairly straightforward matter

to link the two wave systems with due consideration being given to the phase

change between turbine exhaust and core nozzle exit.
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ORIGINAL PAGE IS

OF POOR QUALITY

The analysis performed in this contract has provided two of the four

modules required for the modular prediction of combustor noise. The work

proceeding under another NASA Lewis Contract, NAS3-19736, wherein combustor

noise is being measured at the source and various locations in a CF6-50

engine, should further the activity.
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APPENDIX A

MATRIX INVERSION COMPUTER PROGRAM

The transmission loss for an unchoked turbine can be determined exactly

using the matrix inversion procedure outlined in Section 3.3. The method has

been programmed for time-share usage and a FORTRAN listing is provided in

Figure 35.

A flow chart for the computer program is given in Figure 36. The

program reads the input parameters and then, for each of the one-third

octave band center frequencies from 50 to 4000 Hz, calculates the cut-on

modes (the axial plane wave is always cut-on). Equal energy is assigned to

each mode. An equivalent plane wave (see Equation 62, and text, page 39) is

defined for spinning mode along with a corresponding incidence angle.

The angles for the forward- and backward-travelling waves are calculated

at each blade row and, if total reflection occurs or if there is no forward

propagation, the transmission loss for that mode is set to 20 dB. Otherwise,
the (A) and (D) matrices are formed, (D) inverted, and (D-IA) computed. The

transfer coefficient matrix is obtained by multiplying the matrix product for

all the blade rows and the transmitted wave amplitude T extracted. The

transmission loss for that mode is then found. When this computation has

been effected for all the modes at any frequency, the transmitted waves are

weighted according to the energy distribution and summed to define the trans-

mission loss at that frequency.

The frequency and energy distribution can be redefined as required by

the user. The working frequencies are listed in lines 310 through 330 and

the energy assignment imposed in line 1570. For example, if frequency

inverse energy distribution is desired, line 1570 is changed to: 1570 E(JI) =

I./SQRT (i. - (FRSQ**2)), where FRSQ is the ratio of the cut-on frequency to

the working frequency.

The turbine tip radius and hub/tip ratio are input in line 300.

Normally, the values at the high pressure turbine inlet are used. However,

the values at intermediate station% such as the low pressure turbine inle_

may be more advisable in case of large variations in tip dimensions.

An input sheet is shown in Figure 37. The performance data are stored

in a data file and the name of this file inserted when requested by the

program. A typical output is given in Figure 38. The print-out includes the

input parameters, the cut-on frequency, and the transmission loss for each

frequency. The number of cut-on modes at each frequency is also shown, and

the angles for the incident, reflected, and transmitted acoustic waves; the

amplitudes of the transmitted and first reflected waves, the energy fraction,

and the transmission loss are provided for each mode.
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********** MUDMLE **********

oO lO*_,_Ui,ll] *;
0;.)20*#L I UICARY/t,tT I i_l_}.,,R= ( UL I B ) USERL I B/fUS, R
o030C
()o4u

0o50

OO60&

00t0
00_0

O090

0100&

0t10
0120
0130

0140
O1DO
r) 1 o O&
01 tO
01 UO
019O

020u
0.210
O220
023U

240
02DO
0260&

0270
0280
0290
(,)3O0
0310

• • oq320_
o330&
0340
_q3bO
0300
0370
03_0
0390
C)400C
0410
0420
0430
0440
0450
0400
0470

***** F I'LEI4AhE MObf4L'f *****

CO 4t4(3N,,/CANGP / P I ,'ILIDEG,EIJ_AD
CLl._4f,l[]l'.4":/EINPUT/ NSTAGE, IUPT. IPRINT, P'EO, _FT(], STAGEX (5,21),

NSTA,'£ I'ZLE
CHAH_@:E,Et_ TI'fLE*40

COt4t4ON _'CUIOFA/ THCL,THC!'

CUt.M.,fUN /CAERO / V(21),MX(21),;'4Y(21),A_',iQAN(21),RHORAT(21),
t4ACH(21),AS(21)

_EAL KI,IOKt4(21),t4X,t.,tY,I..IA_H
INLbGER FREt)(20)
HOd I VALENCE ( KNQK}4, At:lOAN )
C[)t4MDN /CAERUI/ U(2]),PHI(21),VI{(21),I-'(21),i(21),GAr,_(21)
COW,iDN /CUUT / TLdSS(IO0), EJ-iI(IOO),'EHR(1UO),TH'f(' ,.'),

Q(IO0) ,B( 100" ,fW(100)
COi,W,,'!ON /CMA'fRX/ 0(3, 3,21),t}. (3,3,21),A(3,.3,21),PRiJD(3,3)
CO ..... _t,i /CATECH/ CF1, CF2, CF.3, odF (.380)

JI_4ENS I,iLI STAGEP (Iub)

,.)I_4ENSI _z_ E(i00)

EQU 7.V_L :_,iOE ( S-IAGF_P ( I ), STAOE X ( i, I ) )
CHARAC'EE,-_ CFL*I/"/"/,CF2_-8, CF3-I/" r,./
CHAuAC'fEI_ TITLE*40, BLANK*40
REAL _4ACHN,14ACH_'4,KMYKk. KNYKF_,Kt4/_k.._,KNXK,_,KI,.4YS4V,KY, XSAV,

KNN, K t,_14
EOUIVALENCE (IBITS,bITS)

2AIA
OAiA
DA tA

:)AfA
'J A fA

f_! TS/U3777 tll I 1-/77/,
,.J, S IG_4A/16 • e}, O. R89,,'
F_EO/50,63, 80,100, 12b, lo0,200,

250,315,aC ),b0(],630,800, i000,

1250, 16C ),2,";')(I,2500° 3150,4000/

PI, iODEG.TE]RAD/3. 141592 _, 57. 2957_3,. O1 14532925/
bLANK/"

•"_,/.14037()0()00 OuO/, J PO/(_ ) 40075 Oa 0007 /

"/

NA,4ELiSY /TNOISE/ IOPT, PEU, TYO,STAGEP,'I"IfLE,GAM,IAEh'O
fAN(.,,.)= 51N(X)/CL (A)

Shf dk NAi4ELIST iNYU'i FILl:

IAERO = 0
CALL FPARA;4 (3,JPO)
YRII,_I," INPUT FILE nA_E "
READ, CF 2
CALL A'f'IACH(L,CFI,L,O,STAT, bUF)
IF( .5iAI.EQ.O..OR. STAT. EQ.OKA ) (30 EL15

90

Figure 35. Program Listing - Matrix Inversion Program.



040U
O490

nS()O

Ohio

0920C
OL_3O
0540
O:)bU
()bOO

Oh70
0580
05wO

OoO0
0010

062u

0030C
0,,540
065O
0600
Oo/b
06Bu

06WO
0700
0/lO

0720
0730

0/40
l lbO

nToO
0110

0 t80
Oleo
,q8oO
OLIIU

O820
0830

')d4_,G

n8oo
08/d
08_JO

O_OO
')WIU

0 I_ _

OwJo
O_4u
()_JbU
0900&
0911
09UU

Figure 35.

PRINT i, STAf
I FtJlttAAT(" INPUT FILE STATUS=",t312)

STOP

Ii_I£1ALIZATION *************_***** '

:) I U_'J' = I
3[3 IO I=I,21
STAOEX(I,I)= BITS
,.,A,,_( I ) : b I TS

10 CONTINUE
/l'(J = 14.090
EI'O = 518. t
iI_FL£ = BLANK

t

REAU INPUi FILE **** COUhlT NF. OF STATIONS

ib CALL h)I£AOI_A(i ,'TIrOlSIi,"STNOI 5}2", .IEND)

IF( JENU.t:.Q.O ) GO "FO 400
0[] 17 I=1.21

IF(SfAGEX(1,I).EQ.BI'ES ) GJ "].'[] 18
U(I) = S[AGEX(1,I) -* 3.04d
PHI(I) = STAGEX(2.I)
_zN(1) = SfAGEX(3,1) _,_ 3.048
P(I) : STA(.)EX(4,I) / 6.89b
1"( I ) = S fAGEX (5, i ) * i. 8
IF( GA;,I(I).NE.}._IfS ) GO T[] 17
dAm(I)= GA&iX (T( I ) )

I / CO_TIN[JE

18 NSfA = I-1
IF( NSTA.EO.2i, ) dSTA = 21
IJSKAGE= (iJS'lA-)/
PRINT 21,TIiL_:,;, :lAdE

21 FOi,h,_AT(//lOX,A4u//32X, I2, " S'.L'AGES"//)
PRINE 22

22 FORMAT(28X,"* AERU-,.itEi,):,40 PARAMET[:.RS *"//

2X, "STAGE",3X, "STATI(JN",3X, "U- FPS",3X, "PHI- DEG",

3X,"VR- FPS",2x,"Pa- HSIA",2X,"TS- DEU R"/)
I,i51(5 = 0

L)l] 24 I=I,NSTA
IF(((I/2)*2)/t. EQ.O ) NS'iG=t',ISTG+I
IF( I.EO.t4Si'A ) ]ISfO=IblTS
PRINT 23,NSEO, I,U(1),PIII(1),VR(I),P(1),£(1)

23 FE]R;4Ai (4X,I1,7X,I2,F12.3,4FlO.3)
.,_4 COi4'f I ]4'Ui

IF( IAERo. EO.O. ) GJ Ti, 21
PRI,4 f 25

2t_ F[JR.VIA'I(/2X, "S'IAUE". 3X, "5"fAfl U14", 5X, "i4X" ,SX, "MY",

IX, "l..;ACifl",L_X, "KNQKM", 7X, "V"/)
NS£O = 0

_;d 26 I=I,NS_A

Program Listing - Matrix Inversion Program (Continued).

.-_
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_"0_i_ .t .,,_'.;L_][,( ( I/2 )*2 )/I .EQ.O ) NSTG=NSTO+I

,.,.},¢X)__,_, ,.,.,, _-_.,( I.EO. 1 ) O[] 1'O 26 ,
10Id " " PRII'_I 23,NSTG, I,MX(I),MY,IJ,;',4ACI-i(I),Kr4OKi,4(I),V(I)
1020

1030

1040

lobO&

lOOO

i070C

1080
10'-)0

llOO

iii0
i120

1130

i14u

lluO

1160
1170
1180

1181
11 d2

_,184
]185

118o

1187

! 188
ilS_&
1190
12OO
1210
1220
1230
1240
125o

12o0

1270
12t_u

1290
1300

1310
1320
1330
1340C

1350

13o0
1370

1380
1390
1400

141d

20 CONTINUE
21 CUNTINUE
20 FOi_MAT (//2X, s TI{ EIA- I ",3X, "fit ETA- _", 3X, "THE fA-T", ,:_X,

"T', _X,'B',_)X,'E', 6X, "T-LOSS'/)

CALCULATE AE_LB-THEtl,,lO PA,_AMEfERS

2_

013 29 I=I,NSTA
AS(1) = 41.42*SORT(GA_I(1)*f(1))
i_X(1) = U(1)/AS(1)
IF( I.LO.I ) 00 TO 29
A/4(JAJJ ( I ) = 5(.)i(f ( GAt,_( I ) *T ( I ) / ( UA/'_I( i -i ) *I ( I -i ) ) )
RHdRAT(1)= f(1)',_P(I-l,/('i(I-l)*P(1))
CUNflNUE

32

AS1 = AS(1)
dI,IEAN= RL]*SQR'I((I.+bIGI4A**2)/2.)

,_!IEAN = I_L,iEAi_/2.54

FPI = I.
i-_EOCU= ((FPI*(ASI*I2.))/(2.*PI*_MEA6))*SQR'I(I.-X'_I**2)

F_EQCI= AIR f (FHEOCLI)
PI_ I I,l'l" 30, FREOC1
PRINi 28

FOt_I,_Af(/IIOX,'***** Fli_S'£ CUT-ON OCCUigS A'i-', IX,I-_.O,
iX. "HZ "._***"///)

UO 300 L=I,20

FP = (2.*PI*FREO(L)*R_EAN)/(ASI*I2.)
X;,ll = _,_X(1)

N 'fH= F P/SO J-{f( I. -X ,,,I1 **2 )
IF( NTII.GT.50 ) NfH=SU
N'ff = 2*NTIt+I
FRSQ= u.

i HI (i)= 0.

2_)1332 J= 1 , N 'lY
E(J)= 0.
CLMTI IIU E

E(L)= I.

gS I U,_,A= 1•

fl--ll (1)= O.

It( NTH.LT.I ) bd
•*** COt,_PUT_ CU'i'-UN

ULI 40 J=I,NTH
Fj = J
FI=FF/FJ

F2 =

F3 =
Fd =

Jl =

fO 50

,_40dE5. AN'SLES, AND ENi:NGY

SORT (F 1 *-4-5- I.,,2- (I. -Xi4I*'2 ))

Xi_l*.2 +F 1**Z
(F2-XI_ 1 )/F3

2*J

Figure 35. Program Listing - Matrix Inversion Program (Continued).
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142U
143U
] 44U
1450
140O
1405
1470
14UO
1big
1580
IbVO

1600

1610

1620
1630C

1040
1650
1660
lo70
lOgO

].69'0'.'
;?uu
lllu
1 /20
1 13U
1 t4d
1750
• 700

l//u
] /80
i tgb
1 o uOC
lUlO
1_2o
1530
ld4U
1850
I000

l_iu
16_0

1890
19"00

1910
1920
1930
19'4o
195U
1 _,'00
19/0
19_50C

1 9_0

40
bO

J2 = 2*J+l
ft{I (1) = u.
fHI (Jl)= 'fODEG*ARCOS(F4)
THI(J2)= -£1{I(Jl)
FC = (FJ*ASI*12.)/(2.*PI*Rt,IEAr_)
FC = FC*S()Rf(1.-Xttl**2)
FRSO = FC/Fi_EQ(L)
IF( FRS(.).(]T.1.025 ) GO TO 40
E(JI) = 1.
F(j2 )= E(JI)
ESIGJ_IA= ES IOl,_'iA+2 ._'E (Jl )
CDNTI NUE
CON'I INUE

**** C_]t4HU'[E ENERGY
D[: GO K=l,J2
L{K )= E(K)/ESIGi.4A

6U CONi INUE

ulS] a IBU liON

OI%IOINALtAOB
POOR QUALITY

*****_ limNER LL]DF TU BUILD I_AT_ICES **_**

SUu_f= O.

OLi 185 K=l,i_Tf
62 fHFN = fHI (K)*I'L]_AD

<r,,_f 5AV= O.

N,.1X5.AV= O.
t,_ = 1

65 ,'4 = i'4+I

IF( ;,I.Gf.HSIA ) Ot_ IU 1 oo

CALCULATE ANGLES Al_J k_Aii:_5

V(N) =
V (,_) =
:'_lY(N) =
_Y ( t,.'.) =
;4ACtt(N)=
,4ACtl (M)=
it = M-I
GA = GAI,I(I)

14-1
Ij (it) *fAH (id,qAo= Ht_I (L]) )-Vi_ (N)
U (_4)*1 AN (iUd AU*PI-t I (,i) ) -VR (N)
V ( [1 )/AS ( r_ )
V (/,1)/AS ( ,4 )

S(.)_{] (_,IX (_,) *'2+;'4Y (i_) **2 )
SQI(f (A._X(t4) **2+rCt (t4) #k2 )

GB = (GA
AASTAR =

XtII4 = I.-AX (N)*'2

XPN = i. +,_IX([])*_,2
X;4I_ = 1 .-;_X (l_,i) *-2
SINN = SIN(IltFN)
COSt; = C[]S(THFN)

**** CHECK FtJi_ UPSi"REA_,._

+I. )/(2 .* (UA-I.) )
((2. + (GA-I.)*_AACI4 (i_)**2 )/(GA+I. ))**GB/MACH (;4)

P RDPAGAT I ON

Figure 35. Program Listing - Matrix Inversion Program (Continued).
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2UO0
201O
2O2O
2O3O
2O4O
2(}50
2000
2070C
20bO
2090
210 0

2110

2120
2 13,,)

2140

2150

2100

2 17(; /0
2180
219u

220u
2210
222U
22J0
2240
22bO
22ou
22/0 71

2280
22_0
2300
2310
232O
233O
2340
2350

2360

23t 0 15
2380
23'_0
,'4UU

2410
242O
2430
2440
2450
2400
2470
2480
249U
2500

Figure 35.

PHSPD = U(N)+AS(N)*COSN
IF( PHSPD.LE.O. ) GL} TO 175
GMi4 = KNQKM (M) *S 1NN/( 1. +t,4X (N) *COSN+_,4Y (N) *S INN )
fN = XfJIN*SINi_

fD = XPN*CDSI',_ +2. *t4X ( N )

EIiUN = ATAN2 ("].]4,'ft.) )
l'Eht2_i = -Oi4i,_*;,iX (M)*( 1.-G_4N*t4Y (14))

*,_'** CHECK FOR TU/AL REFLECTION

_OCL= (1 .-OMI4*_,IY(M) )**2-XHI,_*Uf4N**2

IF( RDCL.LE.O. ) UD TO 115

RADI CL= GMN*SORT(RDCL)

£N = -fERi,4+RAUICL
tO = (I .-G;',II<*I;_Y(M ))**2-Gt4N**2

fHFM = ATAN2( "fi4,Tb )
IF( i_.bF:.l ) Or] it) 70
iH}{ ( K )= TIJuEu*THbN

fHbM = A'fAH2{ TN-2.*TEi_M , "iD )
MACIli4 = _4ACil(t_t)
;._ACtiiI = MACtt(N)
ALFAN - ATAN2(_4Y(N),t4X(H) )
GElAM = ALAN2(lAY(,'4) , ;4X(M) )
IF( MACiI(M).LY.I. ) GO TO 71

DO f = COS (bEiA,t)
UM = BEfAM
_IEfAM = AI_CLJS(AA,_fAI{*DE]E)

dEIAM = 5IGI_(1,L_;,'i)_ETAM
CUNi I NLJE
Kt4 t'Kt4 =

4YKN =

...kAKt, I =
<;i XKI4 =
i<;,'_Y5 AV=
,<_,IxSAV=
_,}KHI4 =
IF ( N.EQ
QKNN =
',3K 14t4 =

A(I,I,N)=

A(I,2,N)=
A(I,3,N)=

A(2,I,N)=

A(2,2,N)=

A(i,3,N)=

O(i, I,N) =

U( I ,2,N )=
0( i, 3,N) =

0(2, I,N)=
O(2,2,N)=
D(2,3,N)=

A(3,I,N)=

Program Listing

G,f,'_N
KI,4YSAV
( 1. -oMh*t4Y (i,/) )/MX (_,{ }
KMXSAV
K_,_YI<_,;
Ki_XK;4
O.
•I ) GO fO 75

I •/SQRT (KN XKNW*2+K,'4 YKN**2 )
I •/SOffi (Kt,{XK;4**2+Ki.4Y Ki4-'2 )

;4X { ti ) +COS (T.HFN)
f,iX (N)-COS {THBN )
KN YKN * OK1';i4
I. +;4ACHN*CE]S (ALFAN-THFH)
I •-MACHIt*C@S (ALFAN+THBN )
QKNN* (.,'4X(N) *KNYKN-MY ( N )*KNXKN )
(MX (M) +COS (THFM) )/A_4QAN(M)
( HX (b,4)-COS ( TfIBt4 ) )/At_QAN ( t,4)
KM YKM*O K/viM/A&_QAN ( M )
RIIQt_AT (M)* (1•+t4ACHN*COS (BETAt4-THFM ))
RHt]RA'I( ). (I•-MACIi_4*C[]S (BETAM+THBt,4 ) )
H}IURAT (_l) * {QK _* (i4X(14) *K_ YK;.i-_Y (i,l )*KI4XKM ))
O.

Matrix Inversion Program (Continued).
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2510
2:020
2030
2b40
2550
2060
20/0

2 ::)90 C
2600
2610

2620
2630
2640
2650C
2600
2670
2680
2690C
2/00
2/10
2/20
2730
2/40
2/bO
2/60C
2/I0
__t80

2790
2 800
2810
2820
2830
2840
2850
2 8oO
287('
2880&
2890
2 900
2910&
2920
292b
2 93{.)
293b
2940
294b
2947
2950
2 9OU
291,,

A(3,2,N):
A (3, 3,i'i)=

U(3, I,N) =

D(3, 2,1'i)=

O(3,3,N)=
t;t]TL] 80

78 FO_MAT(SX o
lX,

***** CU_4P[IfE

11

O.
S II4 ( BEfAr.4-TI-IF_a )
-S I If ( BETAM +THIJ}4 )
QK &li..y, ( KI4Y KA{*S I lq ( BE'#A,'4 ) + Ki4 XK_,I*COS ( b FTAt,_ ) )

"*_*DOilN/;TREA_< RELATIVE FLO_ A_F
"IS SUPEi,SUNIC***'///)

IiiVEJ,'SE OF ;4A'f_IX A,,ID STURE

RG_',I3,

80 CALL bI_]VER(
fHFN = fHFr4
dO TJ 65

N )

***** CU_APUTE MATI{IX PRDDUC'F

lO0 CALL _'_IAPI_[]D(NSTA-I )

*_*** S'I'O;_E AbIPLITUDES

ii0 fHT(K ) = THFr,i*T[JOEG

d(K) = -PROD(2,1)/?ROD(2,2)
LI(K) = Pk)Ui,)(1,I)+B(K)*PROD(1,2)

Q(K) = PRD[)(3,1)+b(K)*PRDD(3,2)

***** CU_'4PU'f£ "£RANS_,IISSION LDSS

120 AS1 = AS(l)
_,S1i = AS (NSTA)
,'X(1) = U(1)/AS1
r,IA(NSTA)= U(NSTA)/ASN

VVl = U(1)*TAI4(Td_dAL)*PhI(I))

VVN = U(NSTA)*fAN('fORAU*PHI(NSTA))
,4Y(1) = VVI/ASI
,IY (NSTA) = VVN/ASN
HHUI{A = P(NS'IA)*f(L)*AS4/(P(I)*'I"CIISTA)_AS1)
:!-:_42 = (I.+/;IX(NSTA)*CbS(TtIFM)+

(,,_Y (NS'KA)+VR (I!STA-1)/ASb)*5 IN (THFM))*(COS ('i'}tFM) +LiX(NSTA))
thin = THI(K)*'iORAo
t'E_l = (I.+I4X(1)*Co_(THI,;+NIY.(1)*

SIN (THIN) _*(G,]S(THIH)+_iX (l) )

fLUSS (K)= 10. *kkJGt',.' (RitdRA*ABS (TER_41/lEh_,t2 )/Tl_; ( K ) **2 )
IF( TW(K).Lf.O. ) GO T[] 176
IF(fW(K).GE.1.) GO f(] 116
Gd 'fO 180

1 /v fLLJSS(K)= 20.
GO TO 171

17o ILOSS(K) = 25.
l// B(K) = 1.

t;q (K)= O.

180 C0i4'/I i4U E

Figure 35. Program Listing - Matrix Inversion Program (Continued).
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2975
2980
2 990
3000
301U
3020
3030C
3040
3050 20O
3060
3070

3080 235
3090 240
31 O0

3110 24b
3120&
3130 3OO
3140
3150
31o0

3170 400
3180

3190CGA_4X

3200
3210
3220
3230
;240

3250 10
3260
3270 12
3280 15

3290

3300

3310CD I 1'_1VE_
3320
3330
3340
3350
3360

3370

3380

3390

3400
3410
3420 i0
3430
3440 20
3450
3460C
3470

IF( TLE]SS(K).LT.O. ) TLOSS(K)
SU_I = i.
TL = TLOSS(K)/iO.
SUM]'= SUMT÷E(K)/IO.**TL

185 CONTINUE

fLS IGMA= i0 .*ALOGI O (SUM I/SUMT )

***** PRINT OUTPUf

= 1.

KT = K
UO 240 I=I,KT
PRINT 235,THI (I) ,]'TIN( I ) , THf(I) , T_i( I ) ,lJ(I) , E( I ),TLOSS (I)
FORMAT(FR.3,2F10.3, F9.4,3FIO. 4)
CONTINUE

PRINT 245,FREO(L),fLSIGMA
FORMAT(/14X,'FI{EOUENCY=', 14, iX, "HZ', 5X,

"fRANSt,{ISSIL]N LOSS=',F6.2////)
CON 3 INU E

IF( JEND.NE.-1 ) GU TO lb

STLIP
ENU

FUNCTION GA_X (T)

FUNCflON GAI,tX(T)
IF( T. LE.800. ) GU 10 10
IF( ].GE.3600. ) GU l O 12
oAMX. = 2.23108/T**.070211
GO i0 Ib

GA/_IX = 1.4
UO ]U 15

UAI,IX = 1.254

_E'fURN
END

CALCULATE INVERSE ElF MATRTX d
SUBRUUTINE DINVER( N )

Cg:.ff40N/CMA'f_X/ L)(3,3,21),L)I(3,3,21),A(3,3,21),PROD(3,3)

DI_.{ENSION DU(9o21),DDI(),21) ,LABEL(3)

£QUIVALENCE (OD(I,1),0(1,1,1)),(DDI(1,1),DI(1,1,1))

L)IA_EI'4S101'IPPRUU(9) , TEi4P (3, 3) ,TEMPI (3,3) , TEMP2 (9)
EQUIVALENCE (PPRUD(I), PNO:'(1, I ) ), (TEt,IP2 (I) ,TEMPI (1,1))

NN = N

DO i0 I=I,9

DDI (I,N)= DO(I,N)
CONI'INUE

CALL MTINV(DDI(I,N),3,3,3,LABEL)
RE'fU RN

**** ENTRY t,_APROL) ** COMPUTE PRODUCT OF DI AND A

Figure 35. Program Listing - Matrix Inversion Program (Continued).
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3480
3490

35 O0

3mlO

3520

3b30

3540 30

3bbO

3560
35/0

3580

3590

3600

3610

3620 40

3630 toO

3640 6O

3680
3660
3O IO
3680
3690
3/()0

.3710 70

3720 80
3 730 9U

3140
3/bO
37o0
3 770 9_

3780 iO0
3 / 9O 200
3800

38.1.0
3820CCU rUFF
383U

4840
,3890
3860
3_/08,

3880
3890

3900

3910&

3920
3930

3940
39b0
3960
39/0
3980

ENTRY MAPRUU( N )
NN = N

DO 30 I=1,3

DO 30 J=l,3
PROD(I,J)= O.

IF( I.EQ.J ) PROD(I,J)=I.
CONIINUE (,:e, ,....

L)O 100 L=I,NN

DO 60 J=l, 3

)t]50 I=i,3

IEI4P(I,J) = O.

DE] 40 K=I,3

fEt4P(l,J)= FE,'AP(I,J)+DI(I,K,L)*A(K,J,L)
C@nTINUE

CONTINUE

COrFJ. I N U E

t .

OO 90 J=l, 3
D[] 80 I=i,3

fE_Pl (I,J)=

L)O 70 K=l,3

I'Et, IP 1 ( I ,J)=
CONTI I',4UE
COl,l'II NUE
COI'4"LI I',IUE

Oo

"fu_4P1 (I, J)+TEHP( I,K)*PROD(K, J)

DO 9b I=1,9
PPROD ( I ) = TEt,?,P2 ( I )

CONTINUE
COH"f I NU E
REfU Ri4
END

DEfERbtIri LUi,iER/UP'PEi-_ CUTOFF LIMIfS

5UEdffJUTI NE CUT�FF
C[],,_,_,_ON/CAItGP / PI,fOOEU,TORAD
C:3:4_10N/CUT'JFA/ THCL,fI4CU

CO,qhdN /CAERU / V(21),t,{X(2!' ,i4Y(2I),A,,aQAN(21),
RIi[]RA'f(2 i), _4AC}I(21 ), AS (21)

}{EAL t4X, _4Y,_IACH, KNOK/_ (21 )

EQU I VALEt, ICE ( Ki40 Kr,_, A_'40Ah' )
CO,q_,fON /CINPUT/ NSTAGE, lOP'f, IPRINT,PTO, TTc],

S'FAUEX (5,13) ,NSTA

C[]4A'IDN/CAEROI/ U(21),PHI(21),VR(21),H, _.), f(21),GAt4(21)

b IiJENSI UN T}{Cl (4b ) , THC2 (21 ),THC3 (21), A_'.;::t'2 )

EQUIVALENCE (THC2,THCl(22)), (THC3,THCI(43J;'
D.A.tA BITS/d377777/177-11/

fAN(X)= SIN(X)/COS(X)

Figure 35. Program Listing - Matrix Inversion Program (Continued).
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3 990C
4 UUO
4010
4O20
4030
a040
4050
4000
4070
4080
4090
4100

4110
4t20
4130

4140
41bO
4160
4170
4180
4190

420O
4210&
4220
4230
4240
429U

42/0
428G
4290
4300

.4310
432bC
4338
434U
4350
4360
A370
43U0

4390

4400
4410
4420
4,1-30
4440
44D0
4468
447O
a48o
4490

***** CALCULAYE FHE 3 CUTFF INCIDENCE ANGLES

L)O 5 I=i,45
EHCI(1)= BITS

b CONTINUE

OL] iOO I=I,NSTA

II = I+1

EIICI (I)=. 90. +'TEIDEG*A RS IN (MX (I))

THC2 ( I ) = -THCI ( I )
IFC I.EC).NS'fA ) GO fO i00
VVl = U ( I )*TAN (TURAD*PHI ( I ) )-VR ( I )
VV2 = U(II)*TAN('EURAD*PHI(II) )-VR(1)
i4Y(1) = VVL/AS(1)
14Y(II)= VV2/AS(II)
_4ACH(1) = SQICI'(MX(1)**2+iMY(1)**2)
,'4ACH(II)= SORT(_iX(II)**2+MY(II)**2)
l'ERbl = SOfff(1.-t4X(II)**2)
ANGFM(1) = ATAN2(TERt4,-MX(II))
ANGFM(2)= AfAi_2(-TEi_bl,-BIX(II) )
KOU = 1

IO ANG = ANGFM(KGO)

GNt,I = SIN(ANG)/(KNOKt4(II)*[L.+MX(II)*CUS(ANG)+

;,IY(I I)*SIN(ANG) ))

X = (1•-ONbi*t4Y (I ))**2- (1. -.',iX(I)**2 )*GNI4**2

IF( X.OE.O. ) GL] "I'[] 20
IF( KOU.EO.2 ) OL] fO 100
t(UU = 2
GO EL) i0

20 XNU = Gi4B'_*._4X(1)*(I.-GiqM*i'._Y(1))+GII;4*S_G(X)

XDEN = (I•-UNI4*,'4Y(i ))**2-L;,q_.,_**2

THC3 (I )= "_rLIOEG*_/Alq2( XNU,XUEN )
lOo CONTINUE

***FIND LA!)GEST - AIIOLE AriD SraALLEST + AItGLE

110

ii_

fHCL = -bou.

D{] iI0 1= 1,44

IF( THCI(1).EQ.b,I,S .L]R. THCI(I;.GT.O. ) UL} TO ii0

/HCL = At4AXI('IHCL,THCI(1) )
CONTIIJUE
THCU = 500.

VO 115 I=1,44
IF( THCI(I).kQ.bITS .OR. THCI(1).LE.O. ) OiJ TO I15

THCU = Aff.I[_l(T}tCU,THCI(I) )
CON T I N UE

120 REEU IeN
END

SUBROI.JTI IiE
RETU Ri,i
ENO

VhAl

Figure 35. Program Listing - Matrix Inversion Program (Continued).
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******* FI LENAt,!_E ._._TIN.V *******

]l)C ._vlfI N V

.30* *************M*TRI X INVER._ ION*************************

40 bdL_J-_OUIINE i4TIf_V(A,NRARG,I_ICAP, G, DII,'I,LABEL)
bO DI_4LNSI,JN A(IDI;,_,NCAh%),LAUEL(r_nAdU)
60 1 _4r_=!4tffANO
/U NC=I,CAdG

t_O JO 21 JI=I,NR
9U 21 LAbEL(J1)=J1

1uo Jd 2.ul Jl=l,Nt_

11 _,* **'_**********_F INU kk;'_,_ It_ titG RO}_ CUN'iAII._ INd LARGE, i "*'**

12u_ ***************AbStJLU]E VALUE I1_ HI VdTAL CDklJ,,Ifq***k,','***
13u !:hi tE,4P=b.O
1.40 _,.. 121 J2=J1,Nd
l:_O ib(A_S(A(J2,J1)),LT.'.(E _) GO Iu t21
io(_ _L_4P=ABS(A(J2,.II))
1 /u I,JlJ=J2

180 I/-1 CLINTIi_Ut_;
1WO IF(Ibld. EO.dl)Gd 10 201

Pl)()* ***********'_'**I_EAd:_A!_ ;_: r_L]','_S f[] PLACE{ L# _.;ES'I ABSf]LUTE
210" **************VALdL IN r'iV,JT Pr_]SITIOI4_.-**.****-******-x-**
220 DJ 141 .J2=1.i4C
230 fE,',lP=A (.11, d2)
240 A(J1,J2)=A(lbld,J2)
2:)0 141 A(li_Io,J2)=i*E_¢_P
240 I=LAUhL(J1)
270 LAdEL(J1)=LAUbL(IL_IU)
2_0 kA_Ek(lblu)=i

9#()-,_ :::=t'.LJ,'.,IPUfE CUEFFICIhNFS IN PIVUI"AL l?b;_::z;
3uO 2()1 iE,,IP--A(J1,J1)
310 A(JI,Ji)=:.O
320 uo 221 .12=i,i_(3
330 271 A(JI,J2)=A(JI,J2)/I_!!..,w
34U* **"_***'_****_**t_) '.ru iE CdLFFICI L:.NfS If.; UTHh-R R,.INS******
350 DU 201 J2=l,Nk'
350 Ir(J2.EQ.j1) U'J Tu 281
.370 Ii,.aP=A(J2,dl)
3,_0 A(J2,JI).-=O.O
3WO DJ 241 J3=I,NC
abO 241 A(J2,J3)=A(J2,J3)-fb,.,_"_A(JI,J3)
410 2ul CU,_flNUE

420 2_1 Cu,_IINUE
43U* *_*_***'****_**Ii_ f'Ei_CHAI'IGE CL]LUt,:_NS ACCUHDI!'4'J l't] ****** **

a40* **********±***INFEI_CHANGES OF kO_.qS OF UI_IJINAL _4A'I't_IX*
4L_O 301 i_l=H,_-I

400 L)U 3_1 .Jl=l.141
470 DLJ 321 d_'=dl,141?
4_3D IF(LABFL(J2).NE.J1) Gf] fL} 321

Figure 35. Program Listing - Matrix Inversion Program
(Continued).
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_u II-(J2.L:Q.JI) Ud i'_J3_i
5':,U du id 341

31U 321 Ud_4'IINUE

b20 341 UU 301 J3=I,i4_

bbo iE_4P=A(j3, Jl)

b4u A(J3,JI )=A(JJ,j2 )

:)_O 3ol A(JJ,j2 )='iEt.,Ir

'300 LA,:;EL(J2)=LABEL(J1)
b/O 3vi CUi4IInUE
u_U 5001 NE].'dtd_
5 90 EI'4D

Figure 35. Program Listing - Matrix

Inversion Program (Concluded).
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MCDMLT Flow Chart

Input:

Compute :

Form:

No. of Stages (N)

Performance Parameters

(U, _, WR, Ps' Ts ) -- (2N ÷ I) Times

Tip Radius (R), Hub/Tip Ratio (a)

Next 1/30B Frequency

F = 50 to 4000 Hz[_

Compute: For a Given Frequency (F)

No. of Cut-on Modes' (NTT)

Energy Distribution E m

[NTT Limited to I01]

[J = I to NTT"
I

For a Given Mode (J)

Incidence Angle (¢i)
Relative Mach Nos.-and Flow Angles

(Mnx, Mny, Mmx, Mmy, an,_ m)

Wave Angles and Ratios

[OBn' @Bm' 8Fn' G(OFn)' Am/An' Km/Kn'

Pm/Pn , knx/k n, kny/k n, kmy/k m, kmy/km]

I Test for Propagation and Total Reflection l

Matrix Elements [Aij], [Dij]

Invert Matrix [D]

Compute Matrix [TC] = (D2NI)- (A2N) .... (DII)(Al)-

Compute Transmitted Wave Amplitude (T)

Compute Transmission Loss [TL(J)3

Next Mode

TL = 20dB

No Next Mode

_Yes

Compute: Summed Transmission Loss for All ]Modes TL

No Next 1/30B Frequency

IF = 4000 RZ? ]

Yes

[Next Case?[

Figure 36. Flow Chart - Multistage, Multimode Computer Program

Using Matrix Inversion.
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Data File

1

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

Stn

R di=siRo)Tip "'

Hub/Tip" Ratio (o) -

Turbine/Power -

No. of Stages (N) -

(use 0 for isolated row)
Input (2N + i) times:

Axial

Vei. (u)

(m/sec)

Abs. Flow

Angle (_)

(deg)

Wheel

Speed (VR)

(m/sec)

Static

Pressure (Ps)

(kN/m 2 or kPa)

Static

I=mp (Ts)

(K)

Figure 37. Input Sheet
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INPUT

STAGE
I
1
2
2
3
3

07/13/27 11.317

FILE NAME = DFLPI1 OE>&_TAL F _ ; ,

C,_r' 2qK k ,,,

3-STG LPTt 2.0 PR I00% N

3 STAGES

* AERO-THERMO PARAMETERS *

STATION U- FPS PHI- DEG VR- FPS PS- PSIA TS- DEG R
I 607.000 O. O. 34.630 730.000
2 421.000 62.100 409.000 28.470 693.000
3 327.000 -33.600 O. 26.170 679,000
4 300.000 62.100 428.000 23.400 660.000
5 255.000 -2.300 O. 21.390 648.000

6 219.000 55.100 437.000 20.280 641.000
7 213.000 45.630 O. 19.560 639._00

***** FIRST CUT-ON OCCURS AT 219. HZ *****

THETA- I
O.

THEGA-R THETA-T T B E T-LOSS
O. 0. 0.5267 1.5109 1.0000 5.3529

FREQUENCY= 50 HZ TRANSMISSION LOSS= 5.35

O. O. O. 0. 5267 I .5109 l .0000 5.3529

FREQUENCY= 63 HZ TRANSMISSION LOSS= 5.35

0. O. O. 0.526 1 I .5109 I .0000 5. 3529

FREQUENCY= 80 HZ TRANSMISSION LOSS= 5.35

. 0. 0. 0.5267 I.5109 I .OOC)O 5. 3529

FREQUENCY= 100 HZ TRANSt,ilSSION LOSS= 5.35

Oo O. O. 0.5267 I .5109 I .0000 5.3529

FREOUENCY= 125 HZ TRANSMISSION LOSS= 5.35

O. O. O.

FREQUENCY= 160 HZ

Figure 38.

0.5267 I .5109 I .0000

TRANS_4ISSION LOSS= 5.35

Typical Output.

5.3529
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I,.

O. O. O.
105.152 O. O.

-I05. 152 -51 .205 O.

FREQUENCY= 200 HZ

0.5267 1.5109 0.3333 5.3529
O. 1,O000 0.3333 20.0000
O. 1.0000 0.3333 20.0000

TRANSMISSION LOSS= 9.84

76.61 7

-76.617

O. O. 0.5267 1.5109 0.3333
O. O. O. 1.0000 0.3333

-32.3]0 -53.120 0.2976 0.4328 0,3333

FREQUENCY= 250 HZ TRANSMISSION LOSS= 8.74

5.3529
20.noon
10.040o

0.

59.477
-59.4 77

O. O. 0.5267 1.5109 0.3333
O. O. O. 1.0000 0.3333

-23.662 -41.815 0.3052 0.7204 0.3333

FREOUENCY= 315 HZ TRANStAISSI()N LOSS= 8.84

5.3529
20.0000
10.4325

0.

46.429
-46.429
105.152

-105.152

O. O. n.5267 1.5109 0.2000
17.875 40.278 0.2935 0.9117 0.2000

-17.875 -32.994 0,3463 0,9371 n.2000
O. O. O. I.nO00 0.2000

-51.205 o. 0. 1.0000 0.2000

FREQUENCY= 400 IIZ TRANSMISSION LOSS= 9.58

O. O. O. 0.5267 1.5109 0,2000
37.004 13.991 30.951 0.3139 1.0457 0.2000

-37._04 -13.991 -26.537 0.3872 1.0872 0.2000
76.617 O. O. O. 1.0000 0.2000

-76.617 -32.310 -53,120 0.2976 0.4328 0.2000

FREQUENCY= 500 HZ TRANSL_ I SS 10N LOSS= 8.69

5.3529
8.9339
9.5133

20.0000
20.0000

5.3529
8.6506

8.5684
20.0000
I0,n400

O,

29.310
-29.310

59.4_7
-59.477

96.118
-96.118

O. O, 0.5267 1.5109 0.1429
10,955 23.895 0.3529 1.1762 0.1429

-10.955 -21.202 0.4261 1.2054 0,1429
O. O. O. 1.0000 0.1429

-23.662 --41.815 0.3052 0.7204 0.1429
O. O. O. I.QO00 0.1429

-44.399 O. O, 1.0000 0,1429

FREQUENCY= 630 HZ TRANSMISSION LOSS= 9.74

5.3529
7.9020
7.7004

20.0000
10.4325
20.0000
20.0000

O.

23.056
-23.056

46.429

-46.429
71.205

-71.205

O, O. 0.5267 1.5109 0.11
8.554 18.450 0.3954 1,2860 0,11

-8.554 -16.811 0.4594 1,2969 0.11
17,875 40.278 0,2935 0.9117 0,11

-17.875 -32.994 0.3463 0,9371 0,11
O. O. 0. 1.0000 0.11

-29.421 -49.603 0.2878 0,5184 0, II

Figure 38. Typical Output (Continued).

5.3529
7.1333
6.9859
8.9339
9.5133

20,0000
10.5856
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105.152 O. O. O.
-105. 152 -51 .205 O. 0.

FREQUENCY= 800 IdZ

O. O. O.
18.434 6.810 14,566

-18.434 -6.810 -13.529
37.004 13.991 30.951

-37.004 -13,991 -26.537
56.048 O. O.

-56.048 -22.086 -39.510
76.617 0. 0.

-76.617 -32.310 -53. 120
105. 152 O. O.

-105.152 -51.205 O.

irj,

1 4.742
-I 4.742

29.946
-29.546

44.532
-44.532

59.979
-59.979

76.617
-76.61 7

97.357
-97. 357

FREQUENCY=IONO HZ

O, O.

5.432 11.539
-5. 432 -I 0.879

I I .046 24. I05
-II .046 -21.366

1 7.076 38.329
-I 7.076 -31 . 700

O. 0.
-23. 897 -42.152

O. O.
--32.310 -53.120

O. O.
-45.279 O.

FREOUENCY=1250 HZ

O. O. Q.
1 I .515 4.235 8.942

-I 1 . 515 -4. 235 -8. 542
23.056 8.554 1 8.450

-23.056 -8.554 -16.811
34. 668 I 3.058 28. 762

-34.668 -13.058 -24.923
46.429 I7. 875 40.278

-46.429 -I 7.875 -32.994
58.498 O. O.

-58.498 -23.208 -4l . 158
71 .205 O. O.

-71 .205 -29. 421 -49. 603
85.390 O. O.

-85.390 -37.382 O.

105.152 0. O.
-I 05. 152 -51 . 205 O.

FREOUENCY=I600 HZ

Ok, NAb J[-j, ..

,P }'(R" k Qr 72:2 7' (

1.0000 0.1tli 20.0000
1.0000 0. IIII 20.0000

rRANSAISSION LOSS= 9.36

0.5267 1.5109 0.0909 5.3529
0.4300 1.3624 0.0909 6.5610
n.4830 1.3598 0.0909 6.4870
0.3139 1.0457 0.0909 8.6506

0.3872 1.0872 0.0909 8.5684
0. 1.0000 0.0909 20.0000
0.3142 0.7784 0.0909 10.2468
O. 1.0000 0.0909 20.0000
0.2976 0.4328 0.0909 10.0400
O. 1.0000 0.0909 20.0000
O. 1.0000 0.0909 20.0000

TRANS#41SSION LOSS= 9.46

0.5267 1.5109 0.0769 5.3529
0.4574 1.4160 0.0769 6.1467

n.5000 1.4055 0.0769 6.1268

0.3515 1.1721 0.0769 7.9292
Q.4249 1.2019 0.0769 7.7276

0.2946 0.9351 0.0769 8.9583
0.3538 0.9677 0.0169 9.3381
0. i.0000 0.0769 20.0000
0.3040 0.7118 0.0769 10.4551
q. 1.0000 0.0769 20.0000
0.2976 0.4328 0.0769 10.0400

Q. l.qOOfl Q.0769 20.0000
O. 1.0000 0.0769 20.0000

£RAN5 41SSI()N

0.5267
0.4795

0.5125
0.3954
0.4594
0.3239
0.3986

0.2935
0.3463

O.
0.3076

0.

0.2878
O.

O.

O.

O.

.5109

.4548

.4409

.2860

.2969

.0841

.1236

0.9117
0.9371

1.0000
0.7370

1.0000
0.5184
1.0000
1.0000
1.0000
I.O000

LOSS= 9.15

0.0588 5.3529
0.05_38 5.83_8
0.0588 5.8530

O. 0588 7.1333
0.05_8 6.9859

0.05 88 8. 4587

0.058_ 8.3105
0.0589 8.9339
0.0588 9.5133

0.0588 20. nOOn
0. 0588 I O. 3843

0.0588 20. nOOO
0.0588 10.5856
0.0588 20. 0000
O. 0588 20. 0000
0.05,38 20. nO00

0.0588 20.0000

rRANSI_I SSION LOSS= 9.35

O. O. O. 0.5267 1.5109 0.0476 5.3529

9.211 3.384 7.115 0.4934 1.4769 0.0476 5.661.3
-9.211 -3.384 -6.859 0.5196 1.4627 0.04/6 5.68/3

Figure 38. Typical Output (Continued).
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18.434 6.810 14.566
-1-3.434 -6.810 -13.529

27.689 10.327 22.461
-27.689 -10.327 -20. 069

37.004 13.991 30.951
-37.004 -13.991 -26.537

46.429 17.875 40.278
-46.429 -17,875 -32.994
56.948 O, O,

-56.043 -22.086 -39.510

66.011 O. O.
-66.011 -26.793 -46. 176

76.617 O. O.
-76.61 7 -32.310 -53. 120

88. 591 0. O.
-88.59] -39.371 0.

I05.152 O. O,

-105.]52 -51.205 O.

FREQUENCY=2000 HZ

O. O. O.
7.368 2. 705 5. 668

-7.368 -2. 105 -5.504
I 4. 742 5. 432 I 1 . 539

-14. 142 -5.432 -1_.879
22. I 31 8. 203 I 7. 664

-22.131 -8.203 -16.157
29.546 I I .N46 24. 105

-29.546 -11.046 -21.366
37.004 I 3. 991 30. 951

-37.004 -13.99l -26.537
44.532 1 7. 076 38. 329

-44,532 -I 7,076 -31,700
52, 169 20),354 46, 443

-52, 169 -20,354 -36,891

54.979 O. O.

-59.979 -23.897 -42. 152
68.067 O. O,

-6.9.067 -27, 3l 8 --47,537

76,617 O, O,

-76,61 7 -32,310 -53, 120

86.016 O, O.

-86.016 -37.765 O.
97.357 Q. O.

-97.357 -45.279 O.

FR £OUE,_ICY=2500 JiZ

0. 4300
0.4830
0.3631
O.4347
0.3139
O. 3872
O. 2935
0.3463
O.
0.3142
O.
0.2923
O.
0.2976
Q.
0.
O.
O.

0.5267
0.5032
0.5239

0.4574
0.5OOO
q. 4022
0.4642
q.3515
0. 4249
0.3139
0,3872
0,2946

0,3538
0. 3079

O, 3259

O,
0.304O

O.

0.2897

O.
0,2976

O,
O,

O,

0.

,3624 0,6476 6.5610

.3598 0.0476 6.487q
,2048 0,0476 7,7103
,2296 0,0476 7,5136

,0457 0,0476 8,65n6

,0872 0,0476 8.5684

0.9117 0,0476 8,9339

0.9371 0.0476 9,5133

1.000)0 0.0476 20.0000
0.7784 0.0476 10.2468
1.0)000 0.0476 20.0000

0.6081 0.0476 I0.6358

I.OO00 0.0476 20.nOOO
0,4328 0.0476 10.0400

1.0000 0.0476 20.QOQO
l.O000 0.0476 20.nOOO
1.0000 n.0476 20.0000

}.0000 0.0476 20.0000

TRANSI4ISSI{}N

.5109

.4908

.4778

.4160
,4055

.3019

.3099

.1721

.2019

.0457

.O872
0.9351

0.9677
0.8687
0.8430

1.0000
0.7118
1.OOOO
0,5725
1,0)000
0.4328
1.0000
1.0000
1.0000
1.0000

O. O. 0. O. 5267
5.841 2. 146 4.483 0.51ql

-5.847 -2. 146 -4.380 0.5265
11 .698 4.302 9.088 0.4783

-I I.698 -4. 302 -8. 675 O. 5I I9

17.555 6.481 13.839 0.4367

-I 7.555 -6.481 -I 2.900 0.4873
23,424 8,694 18,763 0,3.927

-23.424 -8,694 -I 7,071 0.4574

29.310 I0,955 23,895 0,3529
-2_.310 -I0.955 -2 1,202 0,4261

35,223 13,279 29,279 0,3214
-35,223 -]3,279 -25,308 0,3958

TRANS:_ I SS I ON

.5109

.4997

.4884

,4529
,4390

,3759

.3711

.2797

.2917

.1762

.2054

.0748
.1150

Figure 38,

LOSS= 9,26

0.04q0 5. 3529
0,0400 5.5462

0.0400 5_5756

0.0400 6. 1467
0.04'30 , 6. 1268
0.0400 7.0165
O. 0490 6. 8830

0.0400 7, 9292
0.0400 7. 7276
0,0400 8.6506
0.0400 8,5684

0.0400 8.9583
0,0400 9. 3381

0.0400 8.3731
0.0400 9. 9852
0.0400 2_. 0000
0,0400 I O, 4557
0,9400 20. 0000
0.0400 10,6455

0.0400 20.0000

0.0400 10.0400
O. 0400 20. 0000

0.0) 4qO 20. 0000
O. 0400 20. 0000

0.0409 20. _000

Typical Output

LOSS= 8,96

0,0303 5.3529

0.0303 5. 470,9

0.0303 5.4990

0.0303 5. 8555
0,0303 5.8673

0.0303 6. 4575
0.0303 6.3975
0.0303 7. 1797

0.0303 7, 0270
0,0303 7, 9020
0.0,303 7. 7004
0.0303 8, 5076

0,03q3 8.3725

(Continued).



41 .176 15.685 34..974
-41 .176 -15.685 -29.404

47.184 18. 196 41.065
-47.184 -18.196 -33.508

53.273 20.842 47.680
--53.273 -20.842 -37.637

59.477 O. O.

-59.477 -23.662 -41.815

65.849 O. O.
-65.849 -26.714 -46.068

72.470 O. O.

-72. 470 -30. 082 -50. 431

79.481 O. O.

-79.481 -33.909 --54. 950

87.146 O. O.

-87. ]46 -38. 463 O.

96.118 O. 0.
-96. I18 -44. 399 O.

109.677 O. O.

-109.677 -54.998 O.

O.

4.605
-4.605

9.2.11
-9.211
i 3.820

-I 3.820
I 8.434

-I 8.434
23.056

-23.056
27.689

-27.689
32.33 7

"32.337
37.004

-37.004
41.699

-41 .699
46.429

-46.429
51.207

-51 .207
56.048

-56.048
60.972

-60.972

66. O I 1
-66.011

71.205
-71.205

76.617

-76.61 7
82.351

-82.351
88. 591

-88.591
95.741

-95.741
105. 152

--105. 152

FREOUENCY=3150 HZ

0.3005 0.9815

0.3680 1.0214

0.2937 0.9032
0.3435 0.9248

0.3173 0.8729

0.3224 0.8247

O. 1.0000
0.3052 0.7204
O. 1.0000
0.2926 0.6109
O. 1.0000
0.2880 0.4970

O. !.0000
0.3527 0.4328
O. 1.0000
O. 1.0000
O. !.0000"
O. 1.0000
O. 1.0000

O. 1.0000

TRANSMISSION

O. O. 0.5267
1.689 3.521 0.5151

-1.689 -3.457 0.5279
3.384 7.115 0.4934

-3.384 -6.859 0.5196
5.089 I0.792 0.4639

-5.089 --]0.213 0.5038
6.810 I4. 566 O. 4300

-6.810 -13.529 0.4830
8.554 18.450 0.3954

-8.554 -16,811 0.4594

10.327 22.461 0.3631

-10.327 -20.069 0.4347

12.137 26.619 0.3355

-12.137 -23.308 0.4]03
13.991 30.951 0.3139

-13.991 -26.537 0.3872
15.900 35.489 0.2993

-15.900 -29.763 0.3657

17.875 40.278 0.2935

-I 7. 875 -32. 994 0.3463
1 9. 931 45.378 0.3026

-19.93J -36.239 0.3291
O. O. O.

-22.086 -39.510 0.3142
O. O. O.

-24. J63 -42.817 0.301 /

O. O. O.
-26.793 -46.176 0.2923

O. O. O.
-29.42l -49.603 0.2878

O. O. O.

-32.310 -53.120 0.2976

O. O. O.

-35.565 O. O.
O. O. O.

-39.371 0. O.
O. O. O.

-44.134 O. O.
O. O. O.

-51.205 O. O.

FREQUENCY=400C) HZ

.5109

.5051

.4957

.4769

.4627

.4279

.4161

.3624

.3598

.286N

.2969

.2048

.2296

.1236

.1595

.0457

.0872

0.9739
1.0131
0.9117
0.9371
0.8706

0.8590
.0000

0.2784

.0000
0.6949

.0000

0.6081
.,,on

o.5184
.0000

0.4328

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.O00O

0.0303 8. 8893
O. 0303 9. 0083
0.0303 8. 9084
0.0303 9. 5805
0,0303 8.0982
0.0303 10.0647
O. 0303 20. 0000
0.0303 10.4325
0 • 0303 20. 0000
0.0303 10.6337
O. 0303 20. 0000

0.0303 I O. 5258
O. 0303 20. 0000
0.0303 8. 3979

0.0303 20.0000
0 •0303 20 .0000
0.0303 20.0000

0.0303 20. 0000

0.0303 20.0000

0.0303 20. 0000

LOSS= 9.06

0.0244 5.3529

0.0244 5.4228

0.0244 5. 4475

0.0244 5. 661 3
0.0244 5.6873

0.0244 6.0529
0.0244 6.0441
0,0244 6.5610
0 •0244 6. 4870
0.0244 7. I333

0.0244 6.9859

0.0244 7. 7103

0.0244 7.5136

0.0244 8.2338
0.0244 8.0474
0,0244 8.6506
0.0244 8.5684

0.0244 8.9082
0.0244 9.061 3

0.0244 8.9339

0.0244 9.51 33

0.0244 8. 5509

0.0244 9.9[27
0.0244 20. 0000
0.0244 10.2468
0.0244 20.0000
0.0244 10.4982
0.0244 20. 0000
0.0244 10.6358
0.0244 20.0000
0.0244 ]0.5855
0.0244 20.0000
0.0244 10.0400
0.0244 20.0000
O. 0244 20. OO00
0.0244 20.0000
O. 0244 20. 0000
0.0244 20.0000
O. 0244 20. 0000
0.0244 20.00(-)0
0.0244 20. nO00

TRANSMISSION LOSS= 9.15

Figure 38. Typlcal Output (Continued). 107



mIA@E
I
I
2
2
3
3

3-STrJ LPT: 3.0 PR I nO% N

3 STAGES

* AERO-THER_.IO PARAMETERS *

SfATION U- FPS PI41- DEG VR- FPS PS- PSIA TS- DEO

I 673.000 0. n. 33.480 723.000
2 523.000 62.100 409.000 23.410 657.000
3 413.000 -42.900 O. 21.06n 641.qQ0
4 407.000 62.000 428.000 16.910 608.0n0
5 349.000 -26.500 o. 15.080 591.000
6 317.000 55.100 43-1.000 13._70 579.000
7 322.000 18.260 O. 12.830 569.0n0

***** FIRST CUT-ON OCCURS AT 193. HZ *****

THET#-R THETA-T T B E T-LOSS
O. O. 0.4913 1.6899 I .OOqO 4.n764

PREOUENCY= 50 HZ £RANS, II SS ION LOSS= 4.08

O. O. 0.4913 1 .61399 1 .flono 4.0764

FREQUENCY= 63 ttZ TRANS_ISSI()N LOSS= 4.03

Oe O. O. O. 4913 1.6899 I .0000 4. 076¢

FREOUENCY= 80 ItZ TRA[ISP4I.SSI()N LOSS= 4.08

0. O. O. 0.4913 1 .689_ 1 .0000 4. N764

FREQUENCY= I00 HZ TRANS!4ISSION LOSS= 4.08

O. O. O. 0.4913 1.6899 I .0000 4. q764

PREQUENCY= 125 HZ T_ANSi4ISSION LOSS= 4.08

O. O. O. 0.4913 1 .6899 I .0000 4. Q764

FREQUENCY= 160 HZ TRANSMISSION LOSS= 4.08

O. O. O. 0.4913 ! .6899 0.3333

Figure 38. Typical Output (Continued).

4. n764
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101.591 1.689 3.521
-Iql.591 -42.721 -3.457

0.

O.

FREQUENCY= 200 HZ

OtOd_AL p?:.C_; ;2

I. 0000 O. 33.33 20.nonn
I. oooo o. 3333 2o. oooo

TRANSM I SS I 0_ LOSS= 8.63

O. O. 0. 0.4913

77. 135 1.689 3.52l O.

-77. 135 -28.544 -3.457 O.

FREOUENCY= 250 HZ

O. O. O.
60. 501 I .689 3. 521

-60.b01 -2 I . OUO -44. 766

FREQUENCY= 315 HZ

1.6899 0.3333 4.0764
1.0000 0.3333 20.000n

1.0000 0.3333 20.0000

TRA14Sr{ I SS ION LOSS= 8.63

0.4913 1.6899 0.3333 4.0764
O. I .0000 O. 3333 20. nOOn
0.2306 0.8926 0.3333 I0.8433

TRAt!Sq ISSI()N LOSS= 7.93

O. O. O.
47.488 15.977 38.565

-47.488 -15.977 -35.095

IOI.SVl 3.384 7. ll5
-101.591 -42.721 -6.859

FREQUENCY= 400 :{Z

O. O. O.
37.962 12.524 30.220

-37.962 -12.524 -28.073
77.135 3.384 7.115

-77.135 -28.544 -6.859

FREOUENCY= 500 t'IZ

O. O. O.

30.127 9.815 23.642
-30.127 -9.815 -22.316

60.501 3.384 7.115

-60.501 -21.080 -44.766
94.733 5.069 10.792

-94.733 -38.226 -10.213

t-REQUEIICY= 630 i-iZ

0.4913 1.6899
0.2034 1.1035
0.2575 1.1111

O. I.NO00
n. 1.0000

TRANSMISSION

0.4913 1.6899
0.2087 1.2347
N.2932 1.2554
o. 1.0000
O. I.qO00

TR ANS M I SS I ()_1

0.4913
0.2371

0. 3344
O.

O. 2306
0.
O.

1.689V
1.3525
1.3659
1.0000
0.8926
1.0000
1.0000

TR ANSM I SS ION

O. 2000

O. 2000

0.2000

n. 2O00
O. 20nO

LOSS= 9.

0.20nO
• q. 2.on
0..2000

O. 2OO0

O. 20O0

LOSS= 9.no

' O. 429
o. 429
O. 429
0. 429

O . 429
O. 429
0. 42%;

LOSS= 9.53

4.0764
I0.2793
10.044 /
20. 000')
20. OOOb

18

4.0764
10. 4o37
8. 9564

20. o00o
20.00O0

4. 0764
9.56_
7.80O9

2r]. o00r)
I O. 8433
20. nO00
20. 0000

O. O. O.
23.728 7. 668 18.428

-23.728 -7.668 -17.616
47.48:J I5. 977 38.565

-47.48,3 -15.977 -35.095

71 .956 5.089 10.792

-71 .956 -26.08n -53.357

101.591 6.310 14.566

-I01.591 -42. 721 -13.529

FREQUENCY= 800 H/_

r).4913
0.2796

0.3759
O. 2034

n.2575
O.

o. 2378
[?.

,q.

.6899

.4558

.4517

.1035

.1111

.0000
0.6830
I .NOOn
I. O000

O.

O.

O.

O.

O.

n.

O.

O.
O.

TRANSqlSSION I_OSS=

Figure 38. Typical Output (Continued).

9.27

4.0764

9.3457
6. 7459

I0.27_3
I O. q447

20.0000
I 0. 3005

20. no0.
20.0000
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O. O. O.
18.984 6.107 14.642

-18.984 -6.107 -14.126
37.962 12.524 30.220

-37.962 -12.524 -28.073
57.105 5.089 10.792

-57.105 -19.696 -42.231
77.135 6.810 14.566

-77. 135 -28.544 -13.529

101 .591 8.554 18.450
-101.591 -42.721 -16.811

FREOUENCY=IO00 HZ

O. 0. O.
15.189 4.871 11.655

-15.189 -4.871 -11.326
30.368 9.897 23.841

-30.368 -9.897 -22.493
45.578 15.268 36.857

-45.578 -15.268 -33.683

60.99_ 6.010 14.566
-60.998 -21.285 -45.137

77.135 8.554 18.45n
-77.135 -28.544 -16.811
95.753 10.327 22.461

-95.753 -38.804 -20.069

FREQUEIICY=1250 HZ

0.4913
0.3239
0.4098
0.2087
0.2932
O.
0.2353
O.
O.
O.

.

0.4913
0.3655
0.4369
0.2368
0.3330
0.2016
0.2635

O.
n. 2300
O.
O.
O.
O.

.6899

.5338

.5127

.2347

.2554
.0000

0.9521
1.OOO0
I.OOnO
1.0000
I.nooo

TRANSMISSI()N

.6899

.5923

.5593

.3488

.3626

.1283

.1410

.noon
0.£838

1.0000

1.nooo
1.qoorl
l.OOqn

#;_A!'IS_ISSI{):;

0.0909
0.09n9
0.0909
0.0909
0.0909
0.0909
0.0909

0.09 r) 9
0.0909
0.0909
O. 0909

k(]SS= 9.67

0.07¢}9
0.0769
0.0769

0.0769

0.0769
0.0769

0.0769

0.0769
0.0769

0.0769

0.0769

0.0759

O. 0769

LOSS= 9.32

4. n 76
7.2129
5. <;530

10. 4037

8. 955,1
20. nOOn
10. 7237
20. 000'3

20. 0000
20. nOOn
20.0000

4.n764
6.2727
5.3615

9. 5069
7. L',39.2

I O. 4231
9.857.4

20. O0()n

ln. 8544
20. n000

20. 0000
20. nOOn

20. nOOO

0. 0. 0.
I 1 .867 3. 798 9. 068

-1 I . 867 -3. 798 -8. 867
23.72_3 7. 668 I 8. 428

-23.728 -7.668 -17.616
35.5a8 II .692 28.202

-65.58d -11.692 -26.327

4 !.4:38 15.977 38.565
-47.488 -15.977 -35.0'25

59. 534 8. 554 1 8.450
-59.534 -20.681 -44.043

71.956 10.32"/ 22.461
-71 .950 -26.080 -53.357

85.318 12.137 26.619
-85.318 -32.763 -23.308

101 .591 13.991 30.951
-101.591 -42.721 -26.537

FREQUENCY= I 600 !_Z

0.49 i 3
0.4033
O. 45[{9
0.2796
0.3759
0.2149
0.3045
0.2034
n.2575
O.
0.2317
O.
n.2378
O.
q.
O.
'3.

.6899 0.05<;!_

.63oi 0.05:]_

.5976 0.05£9

.455-] 0.053,:}

.4517 0.05,°,8

.2695 n. 05 83

.2896 0.0532,

. 1035 O. 05R8

.1111 0.0538
I .nooq 0.05,98
0. 909,:] 0.0588
1 .O000 0.0589
0.6830 0.05S9

I .OO00 0.0508
I .0000 O. 05,08
I.0000 O. 05R3
1. 000'3 0.0583

TRANS!,IISSIOH LOSS= 9.26

4.

5.
4.
9.
6.

10.

IO.
I0.
20.
IO.
20.
I0.
20.
20.
20.
20.

0764

5097

8795
3457
7459

232B
6271

27'_3
n447

n000

8167
hOOD

3005

nono

nOOn
00r]Q

nooo

O. O. 0. 0.4913 1.6399 0.o416 4.0704
9.494 3.035 7.234 0.4289 1.6o10 0.0476 5.n375

-9.494 -3.035 -7. 106 0.4725 1 .6229 0.0476 4.5900

I 8.984 6. 107 I 4.642 O. 3239 1.5338 0.047,5 7.212-2
-18.984 -6. 107 -14. 126 0.4O98 1.5J27 0.0475 5.9530

28.470 9.254 22.280 0.2452 1.3787 0.n476 9.2965
-28.470 -9.254 -21.100 0.3445 1.3885 0.0476 7.5343

Figure 38. Typical Output (Continued).
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37. 962
-37.962

47.4[)8
-47.4 88

D7.105
-57. 105

66.91 _]
- 6($.91_3
77. 135

-77. 13b

8{3.214

-38.214

I01 .591

-I01 •591

0.

7.596
-7.:)90

15. t8S;
-1 b. 189

22.779

-22. 779
30.J6d

-30.368
37.)52

-3/. 962
15•t)7'_

-45.573
53.242

-5J .242
6n. 998

-6'] • '#98
68._,19

-68.91
77. I 35

-77.135
85. 888

-85. _,88
95.753

-95.753

109.0.31
-I 09•C_31

O.

6.029
-6•029
12•056

-12•0b6
18.081

-I 8•081

24• 04

-24. 04

30. 27
-30. 27

36. 53
-J6. 53
42. 90

-42. 9[)

2.524

-12.524
15. 977

-15•977
10. 327

-I 9•696
12. 137

-23. _]1 1
3.9vl

-28.544
5.900

-34.34)7

7. 875

-42.721

0.

2• 426
-2.42 6

d. 871

-4.87 I
7.35¢

-7.364
9. _)']7

-9.8']7

2.524
2.524
5 •26F]

- 5 •268

8.170

- 8.170
3.'291

-21.285
15 • 900

-24. 698
17• _;75

-28. 544
19.931

-33.074
O.

-38. 864

O.
-4U•219

30. 220 O. 2087
-28•073 0.2932

38.565 0.2034

-35.095 0.2575

22.461 O.
-42.23l 0.2353

26.619 0.
-49.571 0.2276
30.951 O.

-26.537 O•

35. 489 '3.
-29. 763 O.
40•278 O•

-32 •994 0.

FREQUE!qCY=200O HZ Trl MIS_,I

o. 0.4913
5• 775 0• 4473

-5.69:} q• 4815
I1.655 o.3655

-II.326 0.4369

17. 666 O. 2876

-15.91U 0.3[]26

23. F],II 0.235 C_
-22.4'-23 o. 333 n

30.220 O. 20_}7

-28.073 0.29:32
3.5.,957 0.2016

-33. 683 r).263b

43.$29 n.2364

-39.3{5f] q.2427
30.9bI O.

-,15. 137 O. 23Pn

35.4[]9 O.

-51. O-l{J 0.2293

40.2 1,3 0.
-32. 994 0.
45.378 O.

-36.239 O.

O. O.

-39.51G O.
O• n.

-42.817 0.

FRE(JUEllCY=2500 14Z

I .2347 0.0476 I O• 4n37
1.2554 0.0415 8.9564
1.1035 0.04!6 10.2773
I• 1 1 11 0.0476 I0.n447

I. 000() 0.0476 20. no0")
0.9521 0•0476 I O. 723 1
I . O00r) 0.0476 2`0. norm
O• 7760 O. 0476 10. 819?
l.O000 0.0476 20.0000

I .']000 0.0476 2q. n(in{1

1 .qO00 0.0476 20. n)O,_
I. no00 O. 0476 20•0000

I .0000 0.0475 20. qooo
1 .n000 O •0476 20. noO0

SSI()i,I LOSS= 9.33

.689_ 0.0310 4.0-./64
.67ol 0.0370 4.7190
• 641 3 0.037') 4.39!)5

•5923 0•03!0 6.27:'/
•5593 n. 037"] 5. 3515

.4715 0.0370 8.13no

.4641 0•03/0 6.5852

.34;)8 0.0370 9.606W

.3626 O. 03/0 7. 8392

.2647 O. o31') 10.40 37

.2554 f).0370 13•95734
• 12r]:{ (;.03 lq 10.42{31
• 141 n 0. 0370 P. 8574
•n594 O. 0370 3. 7630
.01 77 0.03 10 10.5067
.noon r).037q 20. n00_]

n. 8833 f).0370 IO. 854,4

I.nOqO 0.037") 20. no0

0.738t3 (i.03lq IO./051
1.0000 0.031n 20•o0") )
I ."_Or]O O. 0370 20. r(]{)O
1. 0000 0. 0370 2<).300<)

I .0000 0._)3 i0 20. O0_)O
I .0000 n.0373 2n. nr)o0

1.0000 0.0370 20.0000
I.nf)r)n O. 0370 20.r;003

1 .0000 O. 0370 2f). 'qOOO

fR ANS,{ ISS I()

O. O. 0.4913
I .925 4.575 0.4607

-1 .925 -4. 524 0.4873
3•859 9.214 0.4012

-3. 859 -9.007 O. 4578
5.812 13. 928 O. 3334

-5.812 -13.460 0.4163
7. 793 I 8.731 O. 2765

-7.793 -I 7.893 0. 3733
9•815 23.642 0.237t

-9.815 -22.316 0.3344
I I. _89 28. 680 0.21 33

-11 .F;89 -26.742 0.301 7

14• 032 33.871 O. 2022
-I 4.032 -3 I. I 84 O. 2755

Figure 38. Typical Output

LOSS= 9.31

.6899 0.0303 4•0764

.6851 0.0303 4.5012

.6550 0.0303 ,!.2643

.6339 0.0303 5. 5502

•5955 0.0303 4. 904b
•5483 0.0303 6.9875
.,5240 0.0303 5. 8056

.4496 0.0,303 8.42`23
•4467 0.0303 6. 8093
.3525 0.0J03 9.560#
.3659 O. 0303 7. ;]009
.2611 0.03e3 10.2300
.2815 0.0303 3.7071
.1746 O.OJ03 1 q. 5237
. 1929 0.0303 9.4]5`2

(Continued).
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112

48.247
-48.247

54.343
-54.343

60.501
-60.501

66. 760
-66,760

73.175
-73.175

79.838
-79.838

86.913
-86.913

94.733

-94. 733
104.250

--104,250

O,

4.748
-4. 748

9.494
-9.494
I 4.240

-I 4.240
I 8.984

-18,984
23.728

-23.728
28.470

-28. 470
33.214

-33.214
37.962

-37.962
42.719

-42.71 9
47.488

-47.488
52.280

-52.280
57.105

-57.105

61.977
-61.977

66.918
--66.91 8

71.956
-71.956

77.135
-77. 135

_2.518
-82.518

88,214
-88.214

94.419
-94.419
lO1.591

-I01 ,591

III .521

--III .521

16.261 39.249
-I 6,261 -35.656

15.900 35.489
-I 8. 600 -40. 1 76

I 7.875 40.278
-21.080 -44.766

19.931 45.378

-23. 741 -49. 453

O. O.

-26.647 -54.274

N. O•

-2 9. 891 -42.817

O. O.

-33. 639 -46.1 76
O. O.

-38.226 -49.603
O. Q.

-44.604 -53. 120

FREQUENCY=3150 HZ

O, O,

1.515 3.598
-1.515 -3.566

3.035 7.234
-3.035 -7. 106

4.564 10.913
-4.564 -10.624

6.107 14•642
-6. I07 -14.126

7. 668 18.428
-7.668 -17.616

9. 254 22.280
-9.254 -2 I. I 00
I0._71 26,207

-10.871 -24.583
12.524 30,220

-12.524 -28.073
14.223 34.334

-14.223 -31 •574
15.977 38,565

-15.977 -35.095
I7• 797 42•936

-17,797 -38,644

O, O,
-19.696 -42.231

O. O•
-21.693 -45. 869

O. O.

-23.811 -49.571
0. O.

-26,080 -53.357
O, O,

-28,544 -53, 120

O, O,

-31,271 O,
O, O,

-34,367 O,

O, O,
-38,031 O,

O, O,

-42.721 O.
O. O.

-50. 228 O.

FREQUENCY=4000 HZ

Figure 38.

0.2047
O. 2553
O.
O. 2403
O.
0.2306

O.
0.2276
Q.
0.2470
O.

O.
O.
O.
O.
O.
Q.
Q.

0.4913
0.4701

0.4907

0.4289
0.4725
0.3764

0.4435

0,3239
0,4098

0.2796

0,3759

0,2462
0,3445
0.2231

0.3168
0.2O87
0.2932
0,2018
0.2735
0.2034
0.2575

0,2227
O.2448
O.
0.2353
0.
O. 2291
O.
0.2276
O.
0.2378
O.
0.
O.
O.
O.
O.
O.
O.
O,
O.
O.
O•

1.0940
1.0991
1.0000
0.9992
1.0000
0.8926
1.0000
0•.7789
1•0000
0.6624

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.oooo

TR ANSM ISS ION

.6899
•6901
.6650
.6610
.6229

.6057

,5705
.5338

.5127

.4558

.4517

.3787
,3885

•305O
,3232

,2347

,2554
,1673

.1849

.1035
.llfl
,0553

,0336
,0000

0,9521

1.0000
0.8663
1.0000
0.7760
!.0000
0,6830

.0000

.0000

,0000
.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

0.0303
0.03O3
0.0303
0.0303
0.0303
0.0303
0.0303
0.0303
0,0303
0,0303
0,0303
0.0303
0.0303
0.0303
0.0303
0,0303
0,0303
0.0303

LOSS= 9.26

0.0233
0,0233

0,0233

0,0233

0,0233
0,0233

0.0233

0,0233
0,0233

0,0233

0,.0233
0,0233

0,0233
0,0233

0,0233

0,0233

0,0233

0•0233

0.0233
0,0233

0,0233

0,0233

0.0233

0,0233
0,0233

0,0233

0,0233

0,0233
0,0233

0,0233

0,0233
0,0233

0,0233

0,0233

0,0233
0,0233

0,0233
0,0233
0,0233

0,0233

0,0233

0,0233

0,0233

TRANSMISSION LOSS= 9.33

Typical Output (Continued).

I Q. I _55
10. 1145
20. 0000
I O. 5767
20.0000
10.8433
20.0000

10.8261
20.0000

9.9323

20. n000

20.0000
20.0000
20,0000

20,0000

20.0000
20.0000
20.0000

4.n764
4.3556
4. 1805
5.0376
4.5900
6.0456

5.2102
7.2129
5,9530

8,3457
6,7459

9,2965

7,5343
9,9905

8,2793

10.4037
8.9554

10.5210
9.5471
0.2793
0. o447

9.3149
10.4406
20,nO00

10,7237
20.0000

0.8710
2o.nooo
10.8199
20.0000
10.3005
20.0000
20,0000
20. n000
20.O000

20.0000
20. nOOO
2o.oooo
20. nOOO
20.0000
20.0000
20.O000
20.no00



STAGE
1
I
2
2
3
3

3-STG LPT_ 4.0 PR 100%N

3 STAGES

* AERo-THERMOPARAMETERS*

STATION U- FPS PHI- DEG VR- FPS PS- PSIA
1 681.000 O. O. 33.340
2 554.000 62.100 409.000 21.820
3 445.000 -45.100 O. 19.260
4 462.000 62.000 428.000 14,320
5 403.000 -33.700 ft. 12.430
6 377.000 55.100 437.000 ll.040
7 386.000 5.900 O. I0.030

TS- DEG R
722.000
645.000

626.n00
581.000
562.000
546.000
534.000

***** FIRST CUT-ON OCCURS AT 187. HZ *****

THETA- I THETA-R THETA-T T B
0. O. O. O. 4803 I .6387

FREQUENCY= 50 HZ

E T-LOSS

.0000 2. 9605

fRANSI4ISSI()i4 LOSS= 2.96

. O. O. O. 4803 1 . 6387 . 0000 2 . 9605

FREQUENCY= 63 HZ TRANSMISSION LOSS= 2.96

O. O. O. O. 4803 ! .6387 .OOqO 2. 9605

PREOUENCY= 80 HZ TRANS_4ISSION LOSS= 2.96

O. O, O. 0.4803 I .6387 .OOOq 2.9605

FREQUENCY= I00 HZ TRANS_4ISSION LOSS= 2.96

('*). O. O, 0.4803 1.6387 .0000 2.9605

FREQUENCY= 125 HZ TRANSMISSION LOSS= 2.96

Go O. 0. 0.4803 1 .6387 .O00O 2.9605

FREQUENCY= 160 HZ TRANS'IlSSION LOSS= 2.96

Om O. O.

Figure 38.

_.4803 1.6387 0.3333

Typical Output (Continued).

2. 9605

113



1"31 °257 I.b15 3.59_
-I01 .257 -41 .807 -3.566

FRFOUKi!OY= 200 itZ

O. 9. O.

77. I 85 1.515 3.598
-77. 185 -28.085 -3.566

Fi_EuUEIICY= 250 HZ

O. O. O.

63.61 6 I .515 3.598,
-60.616 -20. 762 -46. 740

FREOUE!!CY= 315 lIZ

q. O. O.
47.611 15.744 37.799

-47.611 -Ib.744 -26.505

101.257 3.(]35 7.234
-101.257 -41.807 -7.106

I:REOUENCY= 400 itZ

r).

O.
1.0000 0.33%3 20.(]o_o

I.r_O00 0.3333 20.O00q

TRANSAI SS I()_! L{)SS= 7.56

0.4803 1.6387 0.3333 2.9606

0. I .nOOQ 0.3333 20.0000
q. 1.0000 0.3333 20.nooo

TRANS#_ISSI()_

_.4803 1.6387
O. I.O000

0.1900 0.94O4

LOSS= 7.56

0.333_

n.3333

0.3333

TRANS_ I SSI()II LOSS= 7.05

2. 960'_)
20. O(?')O

II. 17gJ

O. 4803 I .6337 0.2090 2.96:)_:,
9.15',.23 1.1509 ,0.20qG I 1.1551
0.2101 1. Ib40 0.20_0 10.4406
O. I. 0000 0.20_q:) 20. 0000

0. I .0000 ,q.2 o,!',3 2'3.OC_Q'9

TRA!ISIISSI()[I LOSS= _].58

O. O. O.
38.074 12.344 29.914

-38.074 -12.344 -29.106
77.185 3.035 7.234

-77.185 -28.085 -7.106

Hk_EOUEqCY= 5nO !{Z

O. 4_303 I .6387 n. 2nqo 2. 9605

'3. 1599 1.2793 (].:)r),)o II.483J

q.2_t 5 I .23GI O. 20'Y) ,_. 26,5z_
O. I .OO0!) O.20Y) 20. OOl_
q. I. Oo']q q.200 ) 20.003

TRANS:I I SSI()i_ LOSS: _].45

O. 0. O.

30.223 9.675 23.570

-30.223 -9.675 -23.067
60.616 3.035 7.234

-60.616 -20.762 -46.740

M4.57J 4.564 10o913
-94.578 -_7.504 -10.624

i-REOUENCY= 630 HZ

O. 4333 1.638! 0.1429 2.960'.
0.18t3 1.3795 _.1429 10.659I
q.2816 1.3647 r).14v9 7.9244
t). t. r)oor) r_.I 429 20.OOnO
0.19r],1 0.9404 0.142 _) 11.17_3
O. ].¢)r)OO O. I 429 20. 000'3

O. } .OO00 O. 1429 2f3.f_Or):)

TRAt!StlII;SI()L I LOSS= 9.11

0 . O. O. O. 4803
23.807 7.559 18.468 0.2194

-23.807 -7.559 -18.159 0.3258
47.611 15.744 37.799 0.1593

-47.611 -15.744 -36.505 0.2101
72.036 4.564 10.913 O.

-72.036 -25.671 -55.857 n. 20P,9

101.257 6.107 14.642 O.
-I01 .257 -41.807 -14.126 O.

FREQUEfiCY= 800 HZ

Figure 38. Typical

.6387 _.
.4602 O.
.4551 n.
.1509 O.
.154q O.
.000_ n.

0.7270 O.
l.O0_q n.

l.OOnO O.

TRANS'_ISSION L055=

Output (Continued).

8,98

2. 9605

9. 196_'
6. 6254
II. 1567

10. 4405
20. nO/)O

IO. 122

20. OOqq

20.00'3')
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O. O. 0.
19.050 6.020 14.727

-19.050 -0.020 -14.530

38.074 12.344 29.914

-38.074 -12.344 -29. 106
07.224 4.564 10.913

-57.224 -19.403 -44.054

77.18b 6. 107 14.642

-77.18b -28.085 -14.126

191 .257 7.66_] I R. 42f7
-lOI.2bj -41 •807 -17.616

15. 242
-I 5.242

30.464

-30.464

45.699

-45.699

61.I 12

-'61. 112
77.185

-77.185

95.577

-95.577

FRF_iUEIICY=I_)r)q ltZ

O. 4803

0. 2656
O. "_549

0. 1599

0.241 5
O.

O. 1929

O.

O.

.6387

.51S

.5()2 i

.2793

.2 881

.0000
O. 999)

w.,)000

I .nOon
1. r)Ooo

1.0000

TR AUS#, ISS I()r_

O. O. O. 4803
4.802 I 1.754 n.3145

-4.8o2 -I 1.629 0.3985
9. 755 23. 763 O. 1802

-9. 755 -23.252 O. 28nI

15.n,16 36.201 0.1570
-15.046 -35.016 0.21151

6. 107 14.6,I2 O.

-20. 964 -47.133 _. IS96
7. 668 I 8.42}] ,.

-28.085 -17.616 O.

9.254 :-2. 280 O•
-38. I19 -21.1On 0•

FREOUEqCY=I250 IIZ

0. 0. O. 0. 4803
II.909 3. 745 9. I 66 0.3628

-11._0_ -3.745 -9.090 0.4275
23.80,7 7.559 18.468 0.2194

-23.801 -7. 569 -18. 159 0.3258

35.695 II. 524 27. 979 O. 1642
-35.6vb -II •524 -27.272 0.2521

47.611 15.744 37.799 0.1593
-47.611 -15.744 -36._0'_ n.2101

59. 650 7. 608 IR. 42_ ",.
-59.650 -20.311 -4:_. o73 O. Is;06
72.036 9.254 22.280 O.

-72.036 -25.671 -55. _i57 O. 2_hSV

85.300 I0.871 26.207 O.
-U5.300 -32.206 -24.583 q.

I01.257 12.524 30.22 r_ O.
-I01.257 -41.807 -28.073 O.

.6337

.564 l

.5331
.3 165

.3819

.1771

.1824

. O000
0.v316
I. nOOn

1.0000
I .non.
1. o00n

TR AtISq ISS I()}l

.6387

•5989
.566:#
.4602

.4551

.3100

.3187

.150V

•1540
.Or)nO

O. 957t]

I. 0000
o. 727()
I .nOOn
I.0000
1.0000
I. 0000

0. OO ):)

0.0909
0. 0909

O. 0909

.0909
0. 0909
O. O_r)9

0.0909

fl. r)909

o. 0909

O. 0909

LOSS= 9.38

n.n769
0.0769
0.0769
0.m769

O. 3769
0.0769
0.O769

0.0769

o.n769

0.0769

0.0769

0.0769
(). 0769

Lc)SS= 9.07

o. 058_

0.0588
0.05°8
0.0588
0.0538

0.058_
0. 0588
0.05 88
0. 0538

0. O583

0.05 98
0.0588

O. 05 88
0. O588
0. 0588

O. 05 R8
0.0588

FREOUENCY=16oO HZ TRA','StlISSI(:H Lo:S= v.Ol

7.61t,
5 I 6051

11 .483]
9.266l

20. r'_Ohq
ll.ngl#
20. nO',-,
20. OOt).

20. no00
20. O0:nn

2. 9605
6.3q41
4 nr, ),)• t_';J

10.69_7

7.97: ) 3
I I. 35';q
10.2,!6,'

20. nO00
1 I. 1 855
20. 0000

20. nO00

20. qOHO
20.90nO

2. 9605
5.1452
4. 1552
9. 1967
6. 6254

1 I. 3372
_,. 8938

11. 1567
I 0.44C_6
2O. noon
11.1 63/
20. 0000

I0. 1223
20. 0000
20. n0o']

20. 0000

20. QOqq

O. O. O. "'.4803 1.6387 0.")476 2. 260_

9.52,3 2.992 7.324 0.3972 I•6184 0.0476 4.41b '

-9.528 -2.992 -7.275 0.4455 1.5853 0.0475 3.745:)
19.050 6.020 14.727 0.2656 1.5197 0.0476 7. 671")

-I 9.050 -6.020 -14.530 ').3649 1 .5027 0.0475 5.6051

28.562 9.122 22.243 q.I£8:,' 1.40n,1 0.0475 10.352')
-28.562 -9.122 -21.7V " .2o20 1.4036 0.04!6 7.6021

Figure 38. Typical Output (Continued).
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116

38.074 12.344 29.914
-38.074 -12.344 -29. 106

47.611 15.744 37.799
-47.611 -15.744 -36.505

::7.224 9.254 22.280
-:,/.224 -19.403 -44.054

67.017 10.871 26.207

-67.017 -23.445 -51.837
77. 1_]5 12.524 30.220

-77.185 -28.085 -28.073
_:.162 14.223 34. 334

-8b. ,62 -33. 766 -31.574
iOI .257 15.977 38.565

-I01 .257 -41. 807 -35.095

bREQUENCY=2000 HZ

O. O. O,
7,623 2.392 5.854

-7.623 -2.392 -5.823
15.242 4.802 11.754

-15.242 -4.802 -11,629
22.856 7.250 17.718

-22.856 -7.250 -17.433
30.464 9.755 23.763

-30.464 -9.755 -23.252
38.074 12.344 29.914

-38.074 -12.344 -29.106
45.&99 15,046 36.201

-45.699 -15.046 -35.016

53.364 I0.871 26.2n7
-53.364 -17.901 -41.012

61.112 12.524 30.22O
-61.112 -20,964 -47.133

69.011 14.223 34.334
-69.011 -24.316 -53.433

77.185 15.977 38.565
-77.185 -28.085 -35.095

85.864 17.797 42.936

-85.864 -32.509 -38.644

95.577 O. 0.

-95.577 -38.119 -42.231

108.308 0. O.
-108.308 -46.903 -45.869

FREOUENCY=2500 HZ

0. O. O.
6.05_ 1.898 4.643

-6.050 -I.898 -4.623
12.098 3.804 9.31 _

-12.098 -3.804 -9.2_4
18.143 5.729 14.01 ;

-18.143 -5.729 -13.839
24.184 7.682 18.767

-24.18,1 -7.682 -18.44R
30.223 9.675 23.570

-30.223 -9.675 -23.067
36.262 11.719 28,438

-36.262 -II.719 -27.7q8

42.307 13.829 33.388

-42.307 -13.329 ,-32.380

Figure 38.

0.1599

0.2415

0.1593
0.2101

O.

0.1929

O.

O. 1903

q.

O.

O.

O.
O.

o.

0.4803
0.4225
0.4598
0.3145
0.3985
0.2273
0.3333
0.1802
0.2801
n.1599

O.zal5
0.1570
0.2151

O.
0.1993
O.
O. 1896
O.
0.1934
O.
O.

O.
O.
O.
O.
O.
O.

TRANSM

0.4803

Q.4408
0.4690
q.3601

0.4259

q.2764

0.3728

0.2165

0.3229
0.1813

n.2816
0.1630
0.2495
0.1562

0.2255

Typical Output

1.2793

1.2881
1.1509

1.1540

l.nO00

0.9995

1.0000

0.8228

1.0000
1.0000
1.0000
1.0000
I.O00Q
1.0000

TRANS_tISSION

.6387
.6300
.5998

.5647

.5381

.4722

.4649

.3765

.3819

.2793

.2881
1.1771
I.]824
1.0000
1.0639
i.0000
0.9316

l.O000
0.7U47

.0000

.0000

.0000

.DOON

.0000

.0000

.0000

.0000

SSI()N

.6387

.6368

.6104

.5972

.5653

.5308

.5114

.4555

.4511

.3795

.3847

.3O27

.3115

.2232

.2310

0.0476
0.0416
0.0,476
0._-,5
0. _,4-76
0.0475

0.0476
0.0476
0.0476
0.0476
0.0476
0.0476
0.0476
0.0475

LOSS= ¢. 08

0.0370
O. 0370
0.0370
0.0370
0.0370
O. O37O
0.0370
0.0370

O. 0370
O. 0370

0.0370
0.0370
0.0370

0.0370
0.0370
0.0370

O. 0370

0.0370
0.0370
0.0370
0,0370
0.0370
_.0370

0.0370

O. 0370

0.0370

0. 037,O

LOSS= 9.22

0.0303
O. 03O3

O. 0303
0.0303

0.0303

0.0303

O. 0303

0.0303

0.9303
O. 0303

0.0303
0.0303

0.0303

0.03n3

O. 0303

(Continued).

1t.4833
9.266¢

wi.1567
:).4406
20.0000
II.0919

20.0000
I1.0489

29.0000

20.0000
20.0009

20.0000
20._000
20. nO00

2. 9605

3.921 7

3.a636

6. 3041

4.8039
9.9178
6.4229
I0. 6997

7. 9703
I I .4G33

9.2664

11.3588
10.2467

20.0000
13.8972
20.ooon

11.1855
20.0000

10.8684
20.0000
2o.oono
20.0000

20.0000
20.0000

20.0000
20. n000
20.0000

2.9635

3.5_67

3.2692
5.20 15

4.1 OO_)
7.35{38

5._Ii2
9.3031
6. 705

10.6591
7. 924a

II .37_7

8.9B54

11.5306
0._5t3



48.370 16,023
-48. 370 -I 6,023

54. 465 I 4. 223

-54.465 -18.325
60.616 15.977

-60.616 -20.762

66.859 1 7. 797

-66.859 -23.377
73.248 O.

-73.248 -26.227
79.870 O.

-79.870 -29. 402
86. 877 O.

-86. 877 -33.058
94.578 O.

-94.578 -37, 504

103.812 O.
-103.812 -43.581

O. 0.

4.765 I .494

-4.765 -1.494
9.528 2.992

-9. 528 -2. 992
I 4.290 4.500

-I 4.290 -4. 500
19.050 6.O20

-1 9.050 -6.020

23,807 7,559
-23,807 -7,559

28.562 9.1 22

-28.562 -9, 122
33.317 O. 715

-33.317 - 0.715
38,074 2.344

-38.074 - 2.344
42.837 4.017

-42.837 - 4.017
47.6l 1 5.744

-47.611 - 5. 744
52,403 7,534

-52.403 - 7.534
57.224 O.

-57.224 -19.403

62,089 O,
-62.089 -21 . 366

67,017 O,
-67.01 7 -:?3. 445

72.036 9.
- !2,036 -25.671

77. t 85 O,
- / '. i _5 -28.085

-_2. b28 O.

-32,52d -30,750

'38.1 62 O.
-;38.162 -3J. 766

9_.270 O,

-94,270 -37.317

I01 ,257 O.
-101 .257 -41 .807

I I O. 550 0.
-I I0." ':' "48.668

ri_fit) UE_JC Y=4000

38.436
-37.098

34. 334
-4 I. 878

38.565

-46. 740
42. 936

-51 .711
O.

-42.231
O.

-45.869
0.

-49.571

O.

-53,357
O,

-53.120

FREOUEHCY=3150 HZ
O.
3.654

-3.642

7.324
-7.275
I 1.01 4

--10.903
14.727

-- 14.53O

I 8. 468
-18.159

22.243
-2 I. 795

26.056

-25.442
29.914

-29.106
33. 825

-32.791

3 7,799

-36,505

41.846

-40.256
O.

-44.054

O.
-47,9t]9

P,
-5 I. 837

O.
-55,857

O,
-53.120

O.
O.
t).
O.
r].
O.
0.
o.
0.

O.

ftZ

Figure 38.

O. 1608
0. 2083

O.
O. 1965

O.
O. 1900
O.
O. 1902
0.

O.

O.

O.

P,.

0.

O.

O.

{h, 48O3
0.4536

0.4749
0.3972

O. 4465

O, 3280
0.4069
0.2656

0.3649

0,2194

0.3258

O. 889

0.292.0
ft. 702

n. 264n

O. 999
0.2415
O, 561

q. 2238
O. 593
q.2t01
0, 800

q, 999

O.

q. 1929
O.
O. I 892

O,
O, 1903
O.
0,2089

O,

0

Q,

O,

O,

0,

q,

O,
'),

0.

R,

TR ANSr,{ I SS I()t,I

I. 1406
I. 1 425
1 .0000
I .0458
I . 0000

0.9404
I . 0000
O, 8258

,0000

,0000

.qO0_

,0000

.0000
,0000

.OOOO

.0000

.O00O

,0000

TR ANS;:I I SSION

,6387

.6403

.6182
.6184
.585S

.5752

.5466

.5197

.5027
,4602

.455l

.4004

.4036
,3 404

.3481

.2 793
.2881
.2161
,2235

.15O9

.1540

,0908

.q794

.nooo

O . 9995
1. O0.00

0.9141

I. 0000

0.8228
I .0000
0. 7270
.o00r)
.0000

.ooon
,000O

,0000

,0000
.0000
. qO00

,nO00
,0000

,0000
.0000

Typical Output

.0,03.03

0,0303
0.0303

0,0303

O, 0303

0,03q3

O, 0303

O, 0303

O, 0303

0,0393

0,0303

0,0303

0.0303

0,0303

0.03o3

0,0303

0.03O3
O. 0303

LOSS= 9. II

0,0233
O.'3233

0.0233
0.(]233
0.0233
0.0233

0.(]233
0.0233

0.0233
0.0233
0.0233

0.0233
0.0233
0.0233
0.0233
0.n233
0.0233
0.q233
0.02 33
0.0233
0.0233
0,.0233

0.02_3
0.0233
0.0233
O,0233
0.02 3_
0.0233
O.0233
O.O233
0.0233
0. '32 33
0,0233

O. 02 33
O.3233
0,0233

0,0233
N.0233
0.0233
0.0233
0.0233
0.0233
O. 3233

L()SS= 9, ()U

(Continued).

11.f14_l
10.5119

20.0000
10.9622

2O.0000
11.1783

20,0000

11.0552
20.000'3

2O,oOOo

20.QOOQ
20. nOn')
20.0009
20. O00q
20.00O0

20.n000
20.0000

2o.ooon

2.9605
3.3651

3.1405
4.4152
3.7456
5._6J_

4.6117
7.6710
5.6051
9.1967

6.6254

10.3520

7.6024

11.1031
3.4911

11.4833
9.2664

11.5167
9.9173
1.1567
0.4406
9.9079

Q.g3_

20.DOOr,
1,0919

2':.O00q
I.:09:3

20.moor)
1.0489

20.0000
0.1223

20.0000
20.ooqq
PO,O000

2_.O00n

20.00O0
20.0000
20.0000
20.000'3

20.qOnO
20.0003

2_'.0000

2')._OOq
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,# F,

STAGE
1
I
2
2
3
3

3-STG LPT" 5.2 Pg I00_" !q

3 STAGES

, AERo-]HER_IO PARAMETERS *

STATION U- FPS PHI- DEG VR- FPS PS- PSIA £S- bEG

I 682.000 O. O. 33.31 0 722.000
2 567.000 62. 100 409.000 21.180 639.000
3 460.000 -46.000 O. 18.440 619.000
4 508.000 62.000 428.000 l 2.550 561 .ono
5 461 .000 -38.800 O. I 0.340 535.000
6 444.000 55.000 437.000 8.840 516.000
7 464.000 -4.7QO O. 7.750 498,000

***** FIRST CUT-()I; OCCURS AT 186. HZ <**_,:*

THETA-I
O.

THErA-R THETA-T T B E T-LOSS
O. O. 0.4585 1 .5652 1 ,OOqO I .88nl

FREQUEI',_CY= 50 HZ /RANS_ISSIO_ L)SS= I.'_,8

0. o. n. 0.4585 1.5652 I .qooo 1. R801

FREQUENCY= 63 HZ Ti_AI!S'_TSSIOi,I LOSS= ]. 88

O. O. 0.4585 I .5652 1.00nO I. 8801

FREQUENCY= 80 HZ TRA1JS_4ISSI()N LOSS= 1.88

O. O. O. 45.{5 1.5652 1.0000 1. 8801

FREQUENCY= i00 HZ rRANS4ISSIOH LOSS= 1.88

('_. n. O. O. 45R5 1.5652 I .OOnO I. 88")1

fREQUENCY= 125 ;IZ ,RANSMISSION LOSS= 1.88

O. O. O. 4585 I .5652 1 .0000

r "_gUENCY= _40 HZ TRANS'{ISSI()N LOSS= 1.88

I. 8801

[¢'). 3. O. q.4385 1.565' q.J_3

Figure 38. Typical Output (Continued).

I. £80 1
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I01.232 1.494 3. 654
-Ir) l.232 -41 .708 -3.642

FREQUENCY= 200 HZ

O. I .00o0
o. 1.00oo

ORIGINAL PA(_k: ':

OF I_0OR QUAL_Tf
O. 3.333 20. qOoq

N. 3333 20. r)o@,-)

TRANSHISSI().N LOSS= 6.52

O. O. O.

77.198 I.494 3. 654

-77.198 -28.034 -3.642

O.

60.635
-60.635

FREOUENCY= 250 HZ

0. O.
I.494 3.654

-20. 727 -49. 338

FREQUENCY= 315 tlZ

q. O. O.
4-7.629 15.717 37.148

-47.629 -15.717 -38.382

101.232 2.992 7.324
-101.232 -41.708 -7.275

FREQUEL'CY= 4nn !tZ

O. O. O.
38.091 12.324 29.710

-38.091 -12.324 -30.490
77.198 2.992 7.324

-77.198 -28.034 -7.275

FREQUENCY= 500 t'tZ

0.4585 1.5652
O. 1.0000
O. 1.0000

TRANS!,,IISSIOH

0.45[35 1.5652

0. 1.0000

0.1522 0.9530

£RANS!41SSION

0.4585 1.5652

0.1192 1.1619

0.1674 1.1630

0. 1.0000
O. l.nOOO

/RANS_ISSI()il

0.4585

0.1188
0.1947
O.

O.

1 .5652
I. 2 882
1.2910
1.0000
I .qo00

FR ANSL_ I SS I ON

n.3333

0.3333

0.3333

LOSS= 6.52

0.3333

n.3333

0.3333

LOSS= 6.15

0.2000

0.20q0

0.2000

0.2000

0.2000

k()SS= 7.91

q.2000

0.2000

q.200_
q.2nnq
0.2000

LOSS= 7.79

1.8801
20.0000
20. nooq

1.8801
20.0000
11.6097

I. 88O I

I 2. 295_

I O. 880 !

20.n009

2O.OOOO

1.8801
12.6840

Q.594.9
20. nO00
2O.nOq)

O. O. O.

30.237 9.659 23.592

-30.237 -9.659 -24.080
60. 635 2. 992 7.324

-60. 635 -20. 727 -49. 338

94.570 4.500 II.014
-_4.570 -37.426 -10.903

FREQUENCY= 630 HZ

0.4585
0.1351
0.2324
O.
0.1522
O.
O.

1.5652

1.3775
1.3791

1.0000

0.9530
1.0000
1.0000

0. 429
O. 429

O. 429
O. 429

O. 429

O. 429
0.1429

TRANS_ISSION LOSS= 8.58

I . 8801
II .8156

8.04_' )
20. non,
I 1. 609 !
Pq. 0000
20. 0000

O. O. O.
23.818 7.547 18.595

-23.818 -/.547 -I 8.896
47.629 15.717 37. 148

-47.629 -15.717 -38.382

72.051 4.500 I 1.014
-72.051 -25. 626 -10.903
I01.232 6.020 14.727

-Inl .232 -41.708 -I 4.53n

0.4585
n. 1686
0.2769
0. I192

O, 1674

(3.

O.
t'l

(s.

.5652

.4415

.4392

.1619

.1630

.0000

.0000

.0000

.0000

O.

O.

O.

O.

FREQUENCY= 800 HZ

O. II
O. II
O. '!
0. I

O. II
II

II
II
II

TRANS:,_ I SS 1 ON LOSS= 8.93

Figure 38. Typical Output (Continued).

1.8801
10.0769

6.5020
12.2968
10.8807
20.0000
20.0000

20.0000

20.000O
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_I _

.&e"

O. O. O.

19.059 6.010 14.889

-I 9.059 -6.010 -15.081

38.091 12.324 29.710
-38.091 -12.324 -30.490

57.243 4.500 1 I .014
-57.243 -19.370 -46.460

]7.198 6.020 14.727

-77. 198 -28.034 --14.530
I0] .232 7.559 18. 468

-I01 .232 -41 . 708 -18. 159

FREOUENCY=IO00 HZ

O. O. O.
15.250 4.795 11.921

-t5.250 -4.795 -12.044

30.478 9.739 23.780
-30.478 -9.739 -24.276

45.717 15.021 35.657
-45.717 -15.021 -36.791

61.130 6.020 14.727
-61,130 -20.929 -49.759
77.198 7.559 18.468

--27.198 -28.034 -18.159

95.567 9.122 22.243

-95.567 -38.038 -21.795

FREQUENCY=I250 HZ

0.4585

0.2137
0.3183
0.1188

0.1947
O.
0.1538
O.
O.
O.
O.

I .5652
l . 484 n
I .477n
I. 2 882

I .2910
I. 0000

I. Of 15
I . 0000
I .O000

I. 0000
I. 0000

TRANSMISSION

0.4585
0.2658
0.3555

0.1343
0.2310
0. t176
n.1716

O.
0.1514
O.
O.
O.
O.

.5652

.5143

.5031

.3 749

.3766

.1887

.1905

.OOOO
0.9442

l.O000
1.0000
1.0000

1.0000

TRANS_ ISS ION

0. 0909
O. 0909
0.0909
0.0909

0.0909
0.0909
0.0909
0.0909
0.0909

0.0909
O. 0909

LOSS= 9.00

0.0769
0.0769
0.0769
0,0769
0.0769

0.0769

0.O769

0.0769

0.0769
0.0769

0.0769

0.0769

0.0769

LO SS= 8.74

1.8801
8.1364
5.2606

12.6849

9.594g

20.0009
11.5525

20.0000
20.0000

20.OOOO
20.O000

1.8801
6.3283
4.2709

11.8613

8.1028
12.4894
10.6750

20.Q000
11.6474

20.OOOn

20.OOOq
20.nOOO
20.0000

O. O. O.
11.915 3.739 9.321

-11.915 -3.739 -9.396
23.818 7.547 18.595

-23.818 -2.547 -18.896
35.711 11.505 27.856

-35.711 -11.505 -28.539

47.629 15.717 37.148
-47.629 -15.717 -38.382
59.669 7.559 18.468

-59.669 -20.336 -48.517
72.051 9.122 22.243

-72.051 -25.626 -21.795

85.306 10.715 26.056

-85.306 -32.144 -25.442
101.232 12.344 29.914

-101.232 -41.708 -29. I06

FREQUENCY= I 600 HZ

0.4585
Q.3209
0.3890
0.168u
0.2769

0.1218
0.2044
0.1192
0.1674
O.
O. 1526
O.
O.
O.
O.
O.

O.

.5652

.5367

.5228

,4415

.4392

.3166

.3194

.1619

.1630

.OOOO
0.9699

.OOOO

.0000

.0000

.0000

.nOOO

.0000

0.0588
0.0588

0.0588
0.0588
0.0588
0.0588

0.0588
0.0588
0.0588

0.0588
O. 05 88

n.o588
0.0588

0.0583

0.0588

0.0588

0. n588

TRANS_AISSION LOSS= 8. S6

1.8801
4.766 _
3.4586

10.0769
6.5020

12.5473
9. 1726

12. 2968
10. 8807
20.0000
II.5977

20.0000

20.0000
20.0000
20.nOOO
20.0000

20.0000

O. O. O. 0.4585
9.533 2.988 7.461 0.3615

-9.533 -2.988 -7.509 0.4118
19.059 6.010 14.889 0.2137

-19.059 -6.010 -15.081 0.3183

28.576 9.107 22.299 0.1415
-28.576 -9.107 -22.734 0.2426

Figure 38. Typical Output

.5652 0.0476 1.8801

.5495 0.0476 3.7791

.535n 0.0476 2.9379

.4840 0.0476 8.1364

.¢270 0.0476 5.2606

.3948 0.0475 11.4644

.3957 0.0476 7.6696

(Continued).
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38.091 12,324 29,710
-38.091 -12,324 -30,490

47,629 15.717 37,148
-47.629 -15,717 -38,382

57.243 9, 122 22,243
-57.243 -19,370 -46,460

67.034 I0,715 26,056

-67.034 -23,404 -54,801
77. 198 12.344 29.914

-77, 198 -28,034 -29. 106
88,164 14.017 33.825

-88.164 -33,701 -32,791
I01 •232 15.744 37.799

-101•232 -41 .708 -36.505

0.1188

O. 1947
O. I195
O. 1674

O.
O. 1538

O.

O. 1547

O.
O.

O•

O.

O.

O.

kR EQUENC¥=2000 HZ TRANSM

O. O. O. 0. 4585
7.627 2.388 5.972 0.3918

-7.627 -2.388 -6;003 0.4283

15.250 4.795 II.921 0.2658

-I 5.250 -4.795 -12•044 0.3555
22.867 7. 238 17.854 O. 1759

-22,867 -7,238 -18, 131 0,2846
30.478 9.739 23.780 O. 1343

-30.478 -9.739 -24.276 0.2310

38.091 12,324 29.710 0. I187

-38.091 -12.324 -30.490 O. 1947

45.717 15.021 35.657 0.1176
-45.717 -15.021 -36.791 0.1716

53,583 10.715 26.056 O.
-53.383 -17•871 -43.203 0. i578

61,130 12.344 29.914 0.
-61.130 -20.929 -49.759 0.1514

69.028 14.017 33.825 O,
-69.028 -24.273 -56.511 O. 1588

77. 198 15.744 37.799 O.

-77. Iy8 -28.034 -36.505 O.
85.870 17.534 41 •846 O.

-85.870 -32. 446 -40.256 O.

95.567 O. O. O.
-95.567 -38.038 -44.054 O.

108.245 O. O. O.
-I08.245 -46.766 -47.909 O.

,2882
,2910

.1619

.1630

•OO00
.0115

.no00

0.8355

.0000

.0000

.0000

.0000

.nooo

.0000

l SS I();,,1

.5652

.5572

.5436

,5143

.5031

.4503

.4472

.3749

.3766

.2 382

.2910

. 1 887
• 1905

.0000

.0750

.0000
3.9442

I.0000

0.7971

I.O000
I.0000
I.0000

1 .0000
I.0000
I. o000

I .00oo
I .0000

0,047.-5
0.0476
0,0476
0. 0475
0,0476
0,0476
0,0476

0,0476
O. 04!_
0.0476

0.0476

0.0476

0.0476

0.0476

12. 6840
9.594,9

12. 2724
I O. 8822
20.0000
I 1. 5526
20. O00O

I 1. 3803
20. 0000

20. O00q

20.OO00

20. O00N

20.0000

20. 0000

LOSS= 3.76

0. 0370
0.0370

0. O37O
0.037O

0.0370

0.0370

0.0370

0.0370
0.0370

0.0370

0.0370
0. 0370

0.0370

0.0370

0, 03 70
0.0370
O, 0370

0.0370

0.0370
0.0370

O. 0370
0.0370

0. O37O

0.0370
0.0370
0. O37O

0.0370

I . 8801
3.1164
2.5741

6.3283
4.2709
9. 7300
6.2573

II .8613
8. I02:3

I2.688n
9.5949

I 2. 4894
IO. 6750

20. 0000

1 I .3592
20 •OO00

I I.6474
20.0000
I1. 1200
20. 0000

20.0000
20. OO00

20. 0000

20. O000
20.0000
20. oOOO

20. 0000

FREQUENCY=2500

0. r. O.
6.053 I . 895 4. 742

-6.053 -I .895 -4.761
I 2. 104 3.798 9.468

-12. 104 -3.798 -9. 546
I 8. 152 _, 720 14, I 83

-18.152 -5.720 -14.357

24.196 7. 670 18. 889

-24.196 -7.670 -I 9.200
30.237 9.659 23.592

-30.237 -9.659 -24.080

36.277 II.699 28.297

-36.277 -II .699 -29.003

42.325 13.806 33.01 I
-42.325 -13.806 -33.978

HZ TR AN S,_41SS 1ON

0.4585

0.4137

O, 4401
0.3176
0.3871

0.2248
0.3269
O. 1658

0.2739

0.1351
O. 2324
O. 1209
0.201 9
O. I165
o. 18o5

Typical OutputFigure 38.

.5652

.5619

.5499

.5356

.5217
.4916
.4835
.4379
.4360
.3775
,3791

,3100
,3128
.2345
.2370

LOSS= 5.88

0. 0303
0.0303

0.0303
0.03O3

0.0303
0.0303

0.0303

0.03<]3

0. 0303
O.0303

0.0303

0.0303
0.0303

O. 0303

0.0303

(Continued).

I , 8801
2.6714
2.3192
4. 8503
3. 502 3
7.7179
5.0223

10,2081
6. 5984

II.8156

8.0492

12. 5894
9. 2768

12.6987

10.2453
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48.388
-48.388

54.484
-54.484

60.635
-60.635

66.877
-66. 877

73.263
-73.263

79.881
-79.881

86. 881
-86.881

94.570
-94.570
103. 776

- 103. 776

15. 997 37. 741
-I 5. 997 -39.016

14.017 33.825
-18.294 -44.129

I 5. 744 37• 799
-20. 727 -49. 338

I 7. 534 4 1 .846
-23. 336 -54. 666

O. O.
-26.180 -44. :,54

O. O.
-2 9.34 8 -4 7. 909

O. O.
-32. 995 -51 . 837

O. O.
-37. 426 -55. 857

O. O.
-43. 472 -53. 120

FRE,)UEiWCY=3150 HZ

O. 1223
O. 1659
O.
O. ! 568
O.
O. 1522
O.
O. 1542

0.
O.

O.
O.
n.
O.
O.
O.
O.
O.

i.1511

1.1519
1. 0000
I .0572
i. 0000
0.9530
I .0000

0.8385
.0000

.0000

.0000

•0000
.0000

.0000

. o000
.000o
. r)ooQ
.0000

().03C3

0.0303
0.0303
0.07,03
0.0303

0.0303
0.0303

0.0303

0.0303

0.0303

0.0303

O. 0303

0.0303

0.0303

0.0303

0.0303
9. 0303

b.0303

T,_'qSVlISSION LOSS= 8.77

12.0433
i O. 9557
20. 0000
I I, 4078
20.0000
1 I, 6088
20. DO00
I I .4140
20. nooo

20.0000
20. 0000

20.0000

20. 0000
20.0000
20. 0000

20. no00

20. 0000
20. 0000

F).

4.767
-4.767

9.533
-9. 533
1+.297

.-i ,: .297

_. 218
-23.U1 8

28.576
-28.576

33.332
-33. _'32

O.

I.
--1.

2.
--2.

4.
--4.

6.
--6.

7.
--7.

9.
--9.

I0.
-I0.

492
492
988
988
492
492
010
010
547
547
107
107
697
697

0.

3. 736
-3.74 8

7.46I
-7.509

1.178
- 1.286

4. 889
- 5.081

8.595
- 8.896

22.2 99
-22. 734

26. 003

-2 6. 597

q.4585
0.4289
O. 4481
0.3615
0.4118
O. 2809
0.3651
0.2137
0.3183
n. 1685
0.2769
O. 141
0.2426
o. 1263

.5652 0.0233 I . 8801
.5645 0.0233 2.3815
. 5544 0.0233 2. ! 472
, 5495 0.02.33 3. 7791
,5350 0,0233 2,9379
,5212 0,0233 5,8703
,5090 0,0233 4,031 6
• 4840 0,0233 8, 1364
.4770 0.0233 5,2606
.4415 0.0233 10.0769
.4392 0.0233 6.5020
.3948 0.0233 II,4644
.3957 0.0233 7. 6696

.3438 0.0233 I2.3053

.3463 0.0233 8.7093

Figure 38. Typica] Output(Continued).
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38•091
-38.091

42.854
-42. 854

47.62_

-47.629
52.422

-52.422
57.243

-57.243

62. 107
-62.107

67. 034
-67. 034
72.05 I

-72.051
77• I_d

-77. I9d

82. 536
-,'-]2.536

o ).....164
-_8. 164

94.263
-t_4.263
Inl •232

-I01 .232
I I 0.472

- 11 ). 472

12. 324
-12•324

13.994
-13.994

lu.717
-15.717

1 7. 505
- 17. 505

O.

-I (2.370

O.
-2 l. 32 9

O.
-23. 404

"].
-25.62,1)

O.
-23. 034

O.
-30.693

0.
-33.7O I

O.
-37.239

o.
-41 .708

).

-48.510

29.71n
-30. 490

33.424
-34.416
37.148

-38.382

40.8c98
-42.394

O.

-46.460

N.
-50.592

O.
-54.801

r].

-55. 857
O.

-53.12O

O.
().
O.
q.
O.

O•

O•
O•
O.
P•

0.

O.
O.

O.

O.

q.
O.

O.

O.

O.

O.
O.

O.

O.
q.

O.

q.
O.

O.

O.

O.
O.

0.

O.

O.

0.

1 88
947

168
790

195
674

380

592

1538

1521

1547

•2882
.291q
.2275
.2299
.1619
• 1630
.0939
.0902
.0000

.0115

.0000

0. ?267
1. 0000
0.9355

.0000

,( _ j'

.OOO0

•0000

•0000

.qO00

.,]000

.0000

.0000

.OOOn

•0000
.000o

.000o
•0000

O•

O.

O.
O.

O.

O.

O.

0.
O.

O.
O.

O.

O.
O.

O.

O.
O.

O.

O.

r) I

O.
O.

O.
O.

O.

O•

O.

0?33
02 ;3
0233
0233
0233
n233
0233
0233
0233
0233
0233
0233
O233
0233
0233
0233
0233
0233
0233
0233
0233
0233
0233
0233
0233
0233

0233
0233

12. 6840
9.5948

12.65i]I

10.3182
12. _724

IO. 8822

I0.8213

II .2929
20. O00q

I1 .5526
20. oO00

II. 5943

20. oO00
I 1. 3808
20. 0000
20. OO00

20.0000

20.0000

20. 0000

20. 0000

20. o000
2o.0000

2 O. o000
20. 000)

2O.OOOO
20. 0000

20. nooo

20. O000

FR EQUEI'ICY=4000 HZ TRAHSH ISS I()N Loss= 3.84

Figure 38. Typical Output (Concluded).
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, _ ..r ",2, APPENDIX B

GENERALIZED ITERATIVE PROCEDURE COMPUTER PROGRAM

'.%

The matrix inversion procedure cannot be used for turbines containing

choked blade rows because the matrices decouple at these rows. The problem

is really that it becomes impossible to determine the three downstream

amplitudes (Fm, Bm, Qm) because one of the three available equations is
independent of the downstream amplitudes for a choked row. However, it

remains possible to calculate Fm, Bn, and Qm in terms of Fn, Bm, and Qn"

The solution procedure utilized here exploits this fact. The value of Bm is

guessed at each choked blade row. The amplitudes Fn and Qn from the computa-

tions for the preceding row are used in the choked flow equation to calculate

a Bn*. If Bn* is not the same as the Bn from the immediately preceding

computations, the program returns to the last blade row where B was guessed,

and a new guess is made. If Bn* agrees with Bn, then Fm and Qm are calculated

using the other two equations available at that blade row, and the program

continues to the next row. The final verification of a correct guess is made

at the last blade row where the assumption of an anechoic termination requires

Bin=0.

This procedure is su_arized in the flow chart of Figure 39. Each

choked blade row entails verification of the last guess in the form of

Bn = Bn*? Once this is achieved, a new guess (Bm) follows. The final

verification is (Bm)last stage = 0. The one deviation is at the first blade

row; if this is unchoked, the program guesses at B I. Since F1 = i, Q1 = 0,

F2, B2, and Q2 can be calculated.

A listing of the program can be found in Figure 40, and a sample output

is provided in Figure 41. Both input and output frequency distribution and

energy assignment are the same as in the matrix inversion program.
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Reference and Equations

Used for Operation Noted

See Rcf 19

for Example

This is a 2D --

Problem with

Flow

Equations

(2l) - (23).

(26) - (28).

(3o), (62),
pg 68, 77

J(22), (28). (30)']

(39) - (42),

(45(b)),

(53) - (55)

tILTGS3 - Flow Chart

Input: No. of Stages (N)

Performance Parameters

(U, _, WR' PS' TS) (2A" + I) Times

Tip Radius (R), Hub/Tip Ratio (C)

t
F = 50 to 4000 Bz j-

r

Compute: For a Given Frequency (F)]

____ No. _f Cut-On Modes (NT_)

Energy Distribution (E m)

Compute:

t
l,oltoN=I-- NextNode

t
For a Given Mode (J)

Incidetlee Angle (BI)
Relative Math Nos. and Flow

Angles (Max , May, M mx' Mmy'

a n , B m)

Wave Allgles and Ratios

[8Sn, 0_, 0Fn, 0Fro, O(0)J

am/a n , km/k n, Pm/Pn,

knx/k n, kny/k n, kmx/k m, kmy/k m

¢
_--_] Test for Propagation and Total Reflection J

Check: Blade Row Choked?

NO, Guess B 1

Yes, Guess B 2

F 1 = O, QI = 0

Compute F2, Q2' other B

Check :

[ (59_- (6. } _Compute:

t
Check: Next Blade Row Choked?

No, Compute Fm, Bm, Qm

Yes, Calculate Bn* , Bn = B*?

No, Return to Last Guessed B

Yes, Guess Bm, Continue

t
Last Blade Row Choked?

No, Compute F2N+I _ B2N+I , Q2N+I

Is B2N41 = O?

No, Return to Last Guessed B

Yes, Continue

Blade Row Choked, Calculate Bn*

Bn = Bn*?

No, Return tO Last Guessed B

Yes, B2N+I = 0. Calculate F2N+I , Q2N÷l

t
Transmission Loss for Mode ]

s

t
I_ o _ooo._? I

Next Frequency

TL = 20

dB

Figure 39. Flow Cha_t - Mutistage, Multimode Computer Program

Using Iterative Solution.
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O010*#rtUNll *$

r)O20*#LlbaARY/MTINV,R=(ULIB)USERLIb/TDS,R
0030C

004o

OObO

00604

0070

nO80

009u
01 Ou&

i10 aLAL

0120
O13u

0140
OIbu
OloO&
Ol/u
Ol_u

O1 _u
02 uo

02Ub
0210

022O
023O
0240
02bO
02oO&

O_7u

0280
0290
0300

0310

0315&
0320

0330
0340

0350

0300
03/0
0380C

0390
O400

0410
0420
0430
0440

O400

******* F[LENAME f4LfUS3 *******

CUr lMUN /CANGP / PI,'fODEG,'Tt]_AU
CQt4_QN /CINPUT/ NSTAGE, IOPT, IPRINT, P fO,'f'fU,S'fAGEX(5,15) ,

N S'EA, TITLE
CHARAC'fE R f I ]LE.40

CO_4MON /CUYUFA/ EHCL,THCU

Ct1_4t4014 /CAERL_ / V(Ib),t4X(Ib),/4Y(15),Ai40Ai4(lb),RHQRA](15),
MACH(Ib ),AS(15)

KNQKt4 (15) ,t4X,MY,t4ACH,MABS
I NEhUEH FREO (20)
EQU I VALENCE ( KNOKM, AMOAN )

CU,_M[]N /CAEHUI/ U(lb),PIII(15),VR(Ib),P(15),](15),OA_(Ib)

COMMt]N /CL]U£ / YLt]SS(IOO),fHI(IOO),'[HR(IOO),EHT(IO0),
Q(lO0), B (IO0),BI (100) ,T_(lO0), F(IO0)

COt_MUN /CMA'fRX/ O(3,3.15),DI(3,3,15),A(3,3,15),PROD(3,3,15)
CU/4MUN /CA ffCH/ CFI, CF2, CF3, BUF (380)

DI;4ENSI Ur4 STA(;EP (1_)
D I t4ENS I LiN St4AC[t ( ID )
UIt_ENSIDt_ E(100)

EQU IVALENCE (STAGEP (1 ),S 1AGEX (1,1 ))

CHARACEER CFI*I/"/"/,CF2*8,CF3*I/"I"/

CHA_ACfEt4 EITLE.40, bLANK*40
14EAL MACt{N,#,ACHr4,KMYKt4,KNV<N,KMXKM,KNXKt,I,KMYSAV,KMXSAV,

KNN, K i414
EQUIVALENCE (IBIfS,_IE5)

DA fA

DATA

DAfA

DA EA

OAYA

BIfS/I]3 1 Ii I / ? 4[7777/, QKA/L)4fl3 I00000000/, JP0/0o40075040007/
RO,SIUt4A/t 1.b,0.882/

FREQ/50,63, 80,100,125,160,200,250,315,400,500,
630,800, 1000, 1250, 1600,2000,2500,3150,4000/

PI ,EUDEG,YQflAU/3. 141592 1,5-1.29076, .0174532925/
BLAi_K/" "/

NA_4ELIST /TNL]ISE/ loHf,P'If], f'i J,SEAGEP.'EI'ELE,GAt4, IAEI_L]
"fAN (X) = SIN (X)/COS(X)

SET UP NA_ELIST INPUT FILE

IAERO = 0

CALL FPAI_AM (3,JPO)
PRINT," INPUY FILE rJAI4E "
READ, CF2
CALL A'TEACH (1, CFI, 1, O, STAY, L_tJF)
IF( SYAY. EQ.O. .OR. ,fAT. EQ.OKA ) GO fop

F±gure 40. Program Listing - General±zed Iterative Procedure.
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0400
04 tU
{.)4_0
0490
OmOOC

O510
0520
Oh30

0940
ObbO
0500

Ob /0
ObSO
Ob90
0600
Oo 10C
0620
()030

OobO
0o60
0670
OotJO
0690
o/ob
_-1/o
0/20
0 130
'_ t40
b lbO
[) 160
OtlO
0/80
O/VO
OrS O0
OdlO

0820&

0040
08bO
0o00

Odbu
0890
0900
("_,ita
0920
()Vat)
0940&
09bO
O_O0

PRINT 1 , STAT
1 FORMA'F(" INPUT FILE S'fATUS=",O12)

STOP

I ,I I TI ALl ZATI C]N ********* _*********

b IQP1 = 1
DO 10 I=1,1_

STAGEX(1,I)= BITS
dAi_,_(1)= BITS

10 CONTINUE
P'/O = 14. 096
fTd = bib. /
flTLE = BLANK

t_KAb INPUT FILE ***:: cJUN'f NP. [IF S'fAfi[]i4S

Ib (I, TNOISE, END : 400)

DO 1t I=l,lb

IF(STAGEX(1,I).EQ.blT5 ) 00 TO 18
U(I) = SfA(.,EX(1,I) * .3.048
PHI (I) = SfAOEX(2,I)
VI?(I) = SfAG[-X(3,I) * 3.04_
P(I) = SfAOEX(4,1) / 6.895
f(I) = SfAtJKX(5.I) * 1.8
IF( OAr,_(1).lqE.t31fS ) (3t] id ii
GAM(1)= GA_AX(T(1))

17 CONTINUE

1_3 i451A = i-1
IF( NSfA.EQ.14 ) NS,A=Ib
NSTAGE= (NSfA-1)/2

PRINT 21,TIfLE,i_S'fAL_E
21 bd,OAAT(//16x, A40//32 X, 12, " SfAUES"//)

PRIN[ 22

22 FORl_tAT(28X,"* AkHLI-IHENt4LI PARA/METERS *"//
2X,"STAGE",3X,"S'iAfIt]N",3X,"U- FPS",3X,"PHI- DEG",
3X,"VR- FPb",PX,"rS- PSIA",2X,"TS-DKG _"/)
NS'fU = 0

va 24 I=I,NSiA
IF(((I/2J*2)/I.EQ.O ) NS'.t'G=NSTO+I
IF( I.EO.N iA ) _5,.,=IbIf5

PRINT 23,db i,.J, 1,,J: ', ) ,PHI (I), VR(I) , P( I ), f(I)
23 FL}_I_,A'f(4X, ll,lX, 1.',,-12.3,4F10.3)
24 COi,l'l INUE

IF( IAEI_O. EO.O. ) ,..,to TO 27
PR IN'/ 25

2b FO_'_AT(/2X,"STAUE",3X,"STATION",5X,"I_X",_X,"_,_Y",

IX, "I'._A(2H", b X, "KN OK 14","IX, "V "/)
NS fO = 0
IJO 26 I=I,NS'fA

Figure 40. Program Listing - Generalized Iterative Procedure
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0'970
ov_u
0990
100o
1010

1020

1u30&

IF(((I/2)*2)/I.EQ.O ) NSTG=_dS'IJ+I
IF( I.EO.1 ) GD TU 26

PRIN £ 23, NSfG, I , _4X( I ) , MY( I ) , MACH ( I ), K,qQKr4 ( 1 ) , V( I )
20 CONTINUE
2/ JONTINUK

28 Ft]Rt, tA'[ (//2 X, "'IH ErA- I", .3X, -" l't-i hTA'tt • , 3 X, • .rH ETA- [", 6X,
s_4_XoPb S •E •, ..',, ,6X, ST-LOSS•/)

1040 . ,,, L.

lObOC (.YAL_I_._'E AE,_U-THEm40 PARAMETERS

1070 ..i111t_,29' i=I NSTA
]uc. '-' ;'AS(I) = 4[.42*SO,{I(UAM(I)*f(I))

I100

1110

1120

1130

]14o

llDu
llou

11o2

11/0
ll_U
119U
1200
1210

1220
1230&

1240
1250
12o0
1210
12bU
12_0
1300

1310

1320
1330

iJ4U

135U
13o0

1370
13_L)
1.390C
1400

141U

1420
1430
1440
1450
14o0

,,,IX(1) = U(1)/AS(1)
IF( I.EO.I ) 00 J 29

AMQAN ( I )= 5(DRT(uA/4( I )*T( I )/(<JAM( I-i )*T( I-i ) ) )
_dIURAT(1)= i(1)*F(l-l)/(l(l-l).P(1))

29' CL]Ni INUE

A51 = AS(I)
;-_:,.',EAN= RIJ*SQR'[( ( 1 .+51GHA*.*2 )/2. )
,d;4EAN = h_MEAN/2.54
rPl = I.

FREOCt]= ((FHI*(ASI*12.))/(2.*PI.RMEAN)).SQH'I(I.-X#41**2)
FREQCI= Alrq£(F_EQCU)
PRINT 30, Ft_EOC1
PRINT 28

.30 FORbIAT(//IOX,'**** klRSf C'JI'-ON OCCURS Af',IX,F4.'),IX,
"HZ ****"///)

_)U 30c3 L=I,20

FP = (2.*PI,,'Ph'F{a(L)*R/_4EAi4)/(ASL*12.)
X_41 = _4X(1)

N£H=FP/SQIT[( I. -Xt_, I *,2 )

IF( 14TH.UT.50 ) 1'41"it=50
NTf' = 2*NTH+I
FRSQ= O.

IHI (i)= O.

OLI 32 J=I,N/T
£(J)= O.

32 CON] INUE

h(1)= I.
ESIut4A= 1.
£HI (1)= O.

IF( t,tFtI.LT.1 ) GO lU 50

**** CUMPUTE CU'I-UN NUDES, ANULES, AND ENE,.CGY
DO 40 J=I,NfH
FJ = J
FI=FP/Fj

F2 = SQ_(f(FI**4-FI**2*( i.-t;41"-2 ))
F3 = XMI**2+FI**2
F4 : (F2-Xt,tl)/F3
J1 = 2*J

Figure 40. Program Listing - Generalized Iterative Procedure
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1470
14UO

14_0
1:)(30
1510
1520
1:)3o
lb4O
1640
lobO
loo0

i070

lObU
loyd

1/00C
1 Ii0

1720

1730

1740
i IbO

1 160C
lifo

1/80
ld20
ld30
1040
1_5o
1_0
1 d9b

IdV/
id90

19OO

lvlO
1920

1_30
19406
l_bO

19o0
l_lo
1 w_O
19_0
2000
2010
2020
2030
204O
2050
2060
2070
2080

J2 = 2*J+l
iHI (i) = O.

fHI(J1) = TOUEU*Ar¢CUS(F4)
iHI(J2) = -Till(J1)
FC = (FJ*ASI*12.)/(2.*PI_R_EAN)

FC = FC*SQHf(1.-XMI**2)

IF( FJ_SQ.GT.I.025 ) GO lu 40

E(JI ) = I.

E(J2)= E(JI)
ESIOMA= ESIU/,tA+2.*L_JI)

40 CUNI INUL
DO CL]lql I NUE

*_** CO_IPUTE EIqE_GY DISTRIBUflON
D[) 60 K=I,J2
E(K)= E(K)/ESIO_iA

60 CONflNJE

° :obN, .

,"_,_ _

"" c'. i

***_.-x INNER LO[]P TO bUILD _ATRICES **_**

SlJl_]= O.

c)O 24o K=I,NTT
62 fHt-N :"fHI (K)*fO,'AD

K_YSAV= O.
KMXSAV= O.
_105 = i

MIS'IAK = 1
F(1) = i.O
d(1) =-30.
J(1) = O.

4 = I

65 _a = ,,t+l

IF( M.U-f.l',IS'f'A) GO "10 9b

CALC_tLA'fE ANGLES AND RATIOS

oo 14 = i_i - i

V(N) = LJ(N)*TAI._ (fOwAD*PH I ( N ) ) -VR (N)
V(M) = U(r_)*'IAII(ILJttAD*_'._I(.4))-VR(N)
t.4Y ( N ) = 4 ( l'_)/AS ( N )
J'4Y(_ ) = V (1.,_)/AS (M)
4ACH(N)= SO_'f(_tX(N)**2+;4Y(N)**2)
MACH(_)= SORT(MX(I_)**2+MY(14)**2)

N = M-I

P|IIN = PHI (N )*TORAU
GA = GAM ( I )
GB = (UA+I.)/(2.*(GA-I.))

AASIAR = ((2.+(GA-I.)*I4AC}{(_,I)**2)/(GA+I.))**GB/_ACH(14)

X/_I4 = [ .-MX (N)**2

Figure 40. Program Listing - Generalized Iteratlve Procedure
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2UWO
7100
2110
2120
2150C

2140

2150
21o0

2170
2150
2190
2200
2210
2220C
2230
224O

2250
2260
2270
2280
2290
2300
231J
2320
233O
2340

235O
23o0
2310
235U
239U
2400
2410
241-0
2430

2440
2450
2400
24 IU
248O
24W0
2DO0
2510
252U
2530
2D40
255O
2_60
2 a 70
2580
2590

XPN = 1.+;4X (N)**2
XMM = 1.-MX(M)**2
5ILtN = SIIf (THFN)
COSN = COS ('II'tFI'_)

**** CHECK FOR UPSTREAt4 PROPAGATION

PHSPD= U (N) +AS(N )*CDSi,;

IF( PHSPO.LE.O. ) OU "fO 175

GMN = KNOKM (_,i)*S INN/ ( 1. +MX (N)*C[ISN+MY ( N )*S INN )
fN = Xt4N,SINN
fD = XPN*CUSN+2.*MX (N)

fHUN = ATAN2( TN, fU )

_FEI_M = -G_I4*MX (M)*( 1 .-(;_4N*MY(M ))
**** CHECK FOR TOTAL REFLEC'fIUI4

RDCL= ( 1 • -Ut4N*)4 Y ( M ) )**2-XMtt*UNN{*2
IF( RDCL.LE.O. ) GIJ fU 1/5
RAD I CL= G;4N*SOltT ( RDCL )
EN = -£ERM+_4AUICL
fL) = ( 1. -O/_l[4*!,_Y ( M ) ) **2-GMN**2
fHFM = ATAN2( "EN,_I'U )
IF( N.NI-.1 ) GLJ TO 70
fHR (K )= £L1UEG*fHBI,4

/O fHUl4 = ATAN2( "lN-2.*'fEitM , 1[) )
,'4ACI-|M = MACiI(M)
I_;ACHN = #4ACH(N)

ALFAI4 = ATAN2(NY(N),MX(N) )
BEfAM = ATAN2( MY(r_: t4X(,,4) )
IF( MACH(M).LT.1. ) ;(']TO II

OOf = COS (BE'rAM)
dM = L_E'fAN
,.3EfAt4 = ARCLIS(AASIA_t* ,.iT)

UETAM = SIGN(I,LiM)*bE'fAH
71 CL]I_I II4UE

KMYKI4 = Gb_N

KNYKN = KMYSAV

Kt4XKM = (1.-G_4N*MY(,4))/_.._X(_4)
Ki1XKN = KMXSAV
KMYSAV= KMYKM
Kt4XSAV= KMXKt4
(JKNN = O.

IF( N.EO. 1 ) 00 fL) /5
OKNi4 = I. ISQRT (K_ XKN**2+KNYKN**2 )

/5 OKM_4 = I.ISOR'I"(K_XKhI**2+KMYK_,I**2
A(1,1,N)= MX(N)+COS(THFN)
A(1,2,t4)= 14X (N) -COS (THBN)
A(1,3,N)= KNYKN*QKNN

A (2, 1. N )= 1 • +, 'ACI]I,]*CI3S (ALFAN-'fHFN)
A (2,2, N ) = 1 • -MACHN*COS ( ALFAi4 +THBr4 )
A(2,3,N)= QKNN*(r4X(M)*KNYKN-MY(N).KNXK .)
O(1,1,N)= (,.,1X(M)+CUS(THF_4))/AMQAN(M)

Flgure 40. Program Llstlng - Generalized Iteratlve Procedure
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2000
2010
2620
2030
2640
26b0
2600
2610
2680
2090
2700
2 lob

2110
2-12u
2t30
2/40&
2750C
2 160
2770
2/dOC
2 190
2 dbU

2_Iu

2d40
2dt.)U
2dOU
2870
2 U80
2890
29OO
29].0
292O
292b
2927
2930
2940
294_
2900
296b
296o
2967
2970
2980
2 990
3000
3030

3031
3032
3033
3030

3031

D(I,2,N)=

D( 1,3,N )=
L)(2, I,N)=

D(2,2,N)=

0(2,3,N) =

A(3,I,N)=

A(3,2,N)=
A(3,3,N)=

D(3,I,N) =

U(J,2,N )=
0 (3,3, N )=

(_'vIX(f4)-COS (TIIBW,))/AMOAN (M )
Kt4Y KM*QK_-IA{/Ai_,IOAN(t4)

Ni-IORA'f(f4)* (1 •+i4ACi64,COS (I:]ETAE,I-EI{FM))

RHDRAT ( M)* (1.-t_,ACl"l_,t_CO S (BE'I'AIA + I'H B/,i ))
RHORA'f (_) _ (OK M_A*( I_X ( M) *KI4YK,4-1,,IY (M)*K_4XKM ) )
O.
O.
0.
S I 1,4( B ETAt4-THF_4 )
-S I N ( B ETAM+THBJ4 )
()K M/4* ( KI4YK _A*S I N ( BETAM ) +KMX K_4*CLJS ( b ETM, i ) )

SIIACH (i4) =O.
IF( MACH(M).U].I. ) GO "1-{] 90
GO ill 80

78 FORiv_A'/(bX,'***DLI_INSTNEAM RELAEIVL: FLU4 AT
IX,'IS SUPERSONIC***'///)

***** C[]'_HUTk INVERSE OF MATR, IX AND STdVE

RO_',I3,

80 CALL DINVER( I1 )
***** CO_iPUfE _ATRIX

dO "zO 15b

PRODUCT *****

')2

;t4ACH(M)=I.
'4AuS: SORT( ;4X (N) **2+ ( i4Y ( r, ; +VR (N)/AS (N) ) _'2 )
_ )= (GA,v/(N)+I.)*;4ABS
r6= 2.*(1.+r4ABS**2*(GAM(N)-I. )/2. )/i4X(N)
67: (GAM(N)-I.)*(i4AbS**2-1.)

'{, 1, Iv)= b /+F6*CO5 ([HFn ,)-I=U*COS (PH IN-'/HFN )
A(,3,,2,N) =

A(3,3,N) =

J(J, I.N)=O. ;
d' ) lu 6b

Ob .._ = I

!_ A tJ-----b ,

I", ,; = A' + ].
ikt _',.G'E.NS.FA ) GL., ll; ibo

i = ._ - I
_I-( >_ACI-{(I,I).EC).I. ) GI] i0 II0

I!-( _[SIAK.EQ.O ] B((1) = B(N) +
db_, _-.(])
BI(K)= BGN1
GO lu 160

i0 CONTINUE

F 7-Fn*CUS (THBN )+!:',*COS (Pl{ I N+TttdN )
F 6*KN YKN- rb* (Ki_Y!,,J*l;SS (PIIIi',l)-KN XK{,I*SI,_(PH IN ))

U(3,2,N):0. ; ,., 3,3,N)=0.

0.01

6GS = _(N)

U(N) = -(AC3,I,N)*F(N) + ACJ,3,.d)*Q(N))/A(3,2,N)
hi(K) = B(1)

I F ( Id. Lh. i ) GL] T[; 12 3
d(:_+l) = -30.
IF( PRbQ(L).EQ. IOOU b(N+I)= -85.
5[' ia 130

Figure 40. Program Listing - Generalized Iterative Procedure
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3038
3039
3040
3041
3042

3043
3044
304"_

3040
30--,
30a.:

304v
30bu
3000&

30 t0
300u_
30YU
31DO&

311U
312u
31JO

3140

3150
31o0

31bO
3190
3200
3202
3203
3200
3205
321u

3220

32Ju
3240
32b0
326O
32/0
3280
329U
3300

3310

3%20C
33,:{0
34 O0

3410
342O
3430
3440
3450

3460

l-J ,]_ = ABS(BGS-B(N))
(N+I) = -40.

IF( M.EO.NSfA ) I](t4+l)= O.
IF( GNS.LT.O.O5 ) GILl TO 130
IF( NGS.GT.1 ) UO 'fO 125

r41SIAK = 0

M = NGS
L;(]TO 1O0

L25 15(NGS) = BGS+.OI

t4 = NGS
N = NUS - ].

130 NGS = N + 1

C1 = A(I,I,N)*F(N) + A(I,2,N)*I_(N) + A(I,3,N)*Q(N)
U(I,2,N)*B(N+I)

C2= A(2,I,N)*F(N) + A(2,2,N)*B(N) + A(2,J,N)*Q(N)
D(2,2,N)*B(N+I)

F(N+I)= (i)(2,3,N)*CI - D(I,3,N)*C2)/

((D(I,I,14)*L)(2,3,N)) - (D(2,I,N)*D(I,3,N)))
IF( YHI(K).G].O. ) 013 ][3 135
IF( THI(K).LT.O. ) GEl TO 135

O(il+l)= (C2-D(2, I,N)*F(N+I ))/D(2,3,!'4)
GO TO 140

13b Q(L4+I)= (CI-U(Z,I,N)*F(N+I))/D(I.3,N)
140 CDi_l INUE

GO I O lOO
150 CONTINUE

IF(B(N+I).EO.O.) G[] TO 152
[F(BAG. EQ.O.) 8AG=B(N+I)
L_Af= B(N+I)/_AG

IF(uAf.L'f.O.) Or) fO 152

BAU = B(N+I)
GL] f[J 16b

152 f,V(K)= F(N+I)

J(K) = (J(N+I)
;_(K)= t31(K)

fliT(K )= THFI4*'fODEO
GO TO 1/0

7bb CALL t4APRUU ( N )
fltFN = ",l.t,i-t,4
G[] T[3 65

***** STU_{E AMPLI'fUOES

16u FfN+I)= E(NJ*PRUD(I,I,N)÷B(I_)*PROD(I,2,N)+Q(N)*PROD(I,3,N)
tS_d+l)= F(N)*PROD(2,I,N)+B(N)*PROD(2,2,N)+O(N)*PROD(2,3,N)

Q(,_+I)= F(N)*PROD(3, I,N)+B(N)*PROD(3,2,N)+Q(N)*PROD(3,3,N)
GO iU lOW

16b CONTINUE

IF( NGS.GT.1 ) 13GS=_(NGS)

Figure 40. Program Listing - Generalized Iterative Procedure
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3461
34O2
R463
34o4
3466
3468
34 tOC
34U0
3490
3b00
3510

3520
6DJU
&b40
3bb0

3500
35/0
JbbO

3600

3610
3620&
3630
3632
3634
3636
3t_40
36b0

3651
3652
36b4

3680
3690
3/du
3/10
3/20

3?bOC
3/oo
3790
3uOO
3810

3815

3820
3d._U

3840&
384b
385U
3t_60
3870

3880
3890

IF( NGS.EQ.I ) GO TO 167
UU fO 125

167 B(1) = B(1) + .0001

_= 2

N = I
GO fU 160

***_* CU/4PUTE TRANSt41 SSI ON LOSS

iio ASI = AS(l)
ASN = AS(NSTA)

_aX(1) = U(1)/ASI

r_X(NSTA) = U (NS]A)/ASN
VVI = U (i ).*TAN (TO_AO*PHI (I ))

VVN = U (NSTA)*TAN (TORAD*PH I (NSTA) )

MY(1) = GVI/ASI

I_Y(NSTA)= VVN/ASN
RI4URA = _(I',ISTA)*f(1)*ASN/(P(1)_'t(NSTA,*ASI)
fERM2 = (I.+MX(NSTA)*COS(TIIFM)+

(t4Y (NSTA)+VR(NSTA-1)/ASN)*SII4(TIIFM))*(COS( fHFM)+MX (NSfA))
fHIN = TIII(K)*TORAu
fERkI = (I.+_,_X(1)*CUS(THIN)+IvIY(1)*

SIN (THIN))*(CLIS(THIN)+MX (I))
...._ (K) = 10. *A LO(;10 (RHOhA*ABS (TERM I/TE RM2 )/T_ (K )**2 )

I : IW(K).Lf.O. )UG TO ITI
IF( ]'4(K).OE.1. ) 013 TO 177

IP, _-_]SS(K).LT.O. ) TLLISh(K) = l.
• ;,_ id 180

I 15 fLOSS (K) = 20.
BI(K) = I.

OD l O I/8

177 fLOSS(K) = 25.
I18 TN(K) = O.

180 CONTINUE
SW_I= 1.
fL = TLOSS(K)/i0.
.411_f= SU/4F+E(K)/IO.**TL

• **** PRINT dUTPUT

PRlr41 23b,TIII(K),THJ.,:(K),'fHT(K),T_(K),BI(K),E(KJ,ZLOSS(K)

23_ FU_MAT(Fg. 3,2FtO. 3, F9.4,3FLU. 4)
240 CUNTI NUE

'.SIGI,_A = IO.*ALUUIO(SUMI/SUMT)
_RINT 245 ,F_EO( L), fLSIUMA

24b FORMAT(/t4X, PFREQUENCY=', 14, IX,'HZ",SX,
•I'RAN SM ISS Il]i_LOSS=-", F6.2////)

300 CONTINUE

GO TO 15

400 STQP
END

Figure 40. Program Listing - Generalized Iterative Procedure
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3900CGAMX FUNCTION GAMX (T)
3910 FUi4CTIUN GAI4X (T)
3920 IF( T.LE.800. ) {30 f[] 10
.3930 IF{ T.GE.3600, } GO TLI 12
394u GAMX = 2.23708/T',_. 070211
39t_{, Or} Tu 15
390_-_ tO GMaX = 1.4
3_1u GO TO 15

3980 [2 UAMX = 1.254
3_9u 15 REEURN
40UU END
4010
4020Cd INVEt4
4030
4040
40bO
4060

40/0
4090
41UO

4110
4120
4130
4140
a150
4160
a170

alSO
4 190C

42 OO
4210
4220
4230
4240
4250
42oU
4270
42_U
429U
4300
431U
432{.}
4324
4326
432d
4330

4370 20U t_EiU RN
a380 END
4390
5{360
5 c}-I0

CALCULATE INVEbcSE ,]F MATRIX L)
SUBROUTINE UINVEt_( N )

C[]r4_AON /CMAFRX/ D(J,3, I5},DI(3,3,15),A(3,3,L5),PROD(3,3,15)
DIMENSION DL](9, 15) , ODI (9, 15} ,LABEL{3 )
EQUIVALENu6 ([}D(I,I),D(I,I,I)),(DDI(1.,I),DI(I,I,1))
DIr4ENSION lEtUP(3,3)

DIMENSION AA(9, 18)
EQUIVALENCE (AA(I,I),A(I,I,I})

NN = N

9[3 10 I=I,9

L)L)I(I,N)= L)D(I,N)
10 C{]NT INUE

CALL _,_'fINV(DDI (I ,N) ,3, 3, 3, LABEL)
20 RETURN

**** ENTRY MAPRUO ** CUMPlY/L PRODUCT dF OI AND A

ENi'RY MAPRt]D( N )

NN = N

L = NN

Uu 60 J=l,3

DO bO I=1,3

fEJ'4P(I ,J)= ..

uO 40 K=I,3

FEI,IP(I,J)= TEJ._P{I,J)+L)I(I,K,L)*A(F,J,L)
40:2,JN'I I i4UE
bO ,..,,,TINUE

60 COhilNUE

DO 100 J=l,3

JO i00 I=I,3

I00 PR[]D(I,J,L) = TE_4P(I,J)

ST }P
,/

.

Figure 40. Program Listing - Generalized Iterative Procedure

(Concluded).
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07113177 09. C)31

LOADER DIAGNOSTICS

<r_> ...... LOADED PREVIOUSLY

INPUT FILE NAME = DFLP39

5] AGE
I
I

NASA CORE HOT HPT: 3.0 PR 100% N

I STAGES

* AERo-THER_,_(] PARAMETERS *

STATION U- FPS PHI- DEG VR- FPS PS- PSIA
1 388.000 O. O. 54.730
2 512.000 67.300 81_.OnO 36.490
3 857.000 -38.300 O. 18.230

TS- bEG R
1375.000
1251.000
1050.000

**** FIRST C_F-()N OCCURS AT 369. HZ ****

THETA-R THETA-T T B E

O. O. 0.2808 0.9600 1.0000

_REQUENCY= 50 t IZ TRANSMISSI()ff LOSS= 4.77

T-LOSS
4. 7659

O. n. o. n.28n8 0.9600 I .onno 4.7659

EREQUENCY= 63 HZ FRANS;{iSS[ON LobS= 4.77

O. O. 0. r_. 2808 O. 9600 I . 0000 4. 7659

FREOUENCY= 80 14Z TRA?tS4[SSI()N LOSS= 4.77

'3. O. 0.2808 0.960,'3 I .0000 4.7659

F_EOUENCY= 100 HZ FI_ANSL{ISSI()N LOSS= 4.77

f'). O. O. 0.2808 0.9600 I .0000

FREQUENCY= 125 HZ TRANSi_ISSION LOSS= 4.77

O. O. 0.2808 0.9600 1.00C)O

FREOUENCY= 160 HZ ,tRANSMISSION LOSS= 4.77

4. 7659

i

4. 7659

O. O. O. 0.2808 0.9600 1.0000

Figure 41. Sample Output.

4.7659
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fREqUENCY= 2n0 HZ TRA_!_; IISSIO'4 LOSS= 4.77

F).
0 . O. t3.280 8 0 .9600 I.00qq 4 .7659

FREQUENCY= 250 lIZ TRANS'41SSION LOSS= 4.77

q. q. O.

FREQUENCY= 315 HZ

O. 0. O.
76.J85 O. O.

-76.385 -53,807 O.

FREQUENCY= _00 HZ

0.2808 0.9600 1.00qO 4.7659

TRANS!{ISSION LOSS= 4.77

0.2808 0.9600 q.3333 4.7659
0. 1. 0000 O. 3333 20. 0000
O. I. 0000 • 0. 3333 20. nor] "1

TP, ANS_{ISSI()N LOSS= u.28

56.016

-56. r)16

Oo

12. d5

-42. 455

33.n_8
- 33. :) 98

76.385
-76.385

O. O. 0.2808 0.9600 0.3333 4.7659
O. O. q. I.O00O 0.3333 20.0000

-37.869 -79.743 0.3443 9.1700 n.3333 5.8353

FREqUE:ICY= 500 HZ ERANS_4ISSIOI4 LOSS= 6.96

O. O. 0.280 _ 0.9600 0.3333 4.7659
28.409 37.114 O. q.7300 0.3333 25.0000

-28.409 -58. 120 0.4122 0.1200 0.3333 2.7835

FREQUENCY= 630 HZ i_¢ ,r--A,,bt ISSION [ c_:,S= 5.41

O. 0. 0.2808 0.9600 0.2000 4.7659
21.698 30.422 0.281o 0.7300 0.20(10 4.4967

-21. 698 -43. I83 o.5850 -0.3500 O. 20q0 I .mOO0

0. O. q. I .O00O O. 2000 20. nqOO

-5 3. 807 O. n. I.q000 0. 2000 20. 0000

fREqUENCY= 800 HZ i'hANS)IISSI()tl LOSS= 5.22

O. O. 0. 0.2808 0.9600 0.20no 4,7659
26.206 17.076 25.098 0.2811 0.7800 0.2000 4.6035

-26.206 -17.076 -33.188 O. -8.8000 0.2000 , .qO00
56.016 O. O. O. 1.0000 0.2000 20.0000

-56.016 -37.869 -79.743 0.3443 0.1700 0.2000 5.8353

RE(_UE!ICY=I OqO HZ TRAN5,_{ I SSION LOSS: 7.19

0.

20.835
-20. 835

43.237
-43.237

71.546

O. O. n. 280u 0.9600 0.1429 4. 7659

13.525 20.593 0.2729 0.8200 0.1429 4.9128

-I 3.525 -25.742 O. 2.0000 O. 1429 25. nOO0
2"-3.676 37.355 O. 0.7200 O. I 429 25. q000

-23.6/6 -58.721 0.4092 0.1300 0.142o 2.8780
O. O, O, I .0000 O. 142_ 20.0000

Figure 41. Sample Output (Continued).
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- 71 . !;4:_ -49.848 -112.2J4 n.3437 0.0300 0.1429 11.9307

_(- r- •FREJULHCY=I250 HZ T_'JISqI,SSION LOSS= 7 47

,0.

I6. 209

-I 6.209
33.09d

-33.09!3

51 .832

-51. 832
75.385

-76.3S5

O.

12. 938

-12.93_?

26.206
-26). 2n5

40.266
-40.266
56 .Of 6

-o':. ,} ] 0
76.3U5

-76.30"]

O. O. O. 2808 q. 9600 O.

IO. 495 16. 455 O. 2766 O. 8500 O.

-10.495 -19.588 O. 14.95 1 .3600 0.
21 .698 30.422 0.281: O. 730q n.

-2 I. 698 -43. I83 0. 5850 -0.3500 O.

O. O. O. I .0000 O.
-34. 802 -72. 654 0.35v4 n. 1800 o.

n. n. O. I .oo0o o.
-53. 307 O. '_. I. noon n.

bREOUENCY=1600 HZ TRAHS,4ISSt()'4 T )SS= ,_.00

6-].

8.

17.
-17.

26.
-26,

0.
-37.

0.

-53.

o. n. 2R08 O. 9600 0.0909

365 13.382 0.2809 O. %700 0.0909

365 -15.383 0.2073 1.1900 0.0909

076 25.0)8 0.2,'11 D. 7800 n. 09q9
076 -33. 1 _}_ q. -8. 8000 ' .0909

606 35.433 n. l .0200 0.0909
606 -54. 069 . +374 0.0700 0.0909

O. I. I.('1000 0.0909

869 -79. 743 n. 3443 O. 1700 0.0909
O. 0. I .qOOO 0.0909

::{07 O. O. 1.000n O. 0909

FREOUENCY=200q , tRANSMISSION k()SS= 7.16

0. 0. O. 0.2808 0.9600 0.0769
10.335 6.676 10.R49 _.2752 0.8900 0.0709

-I q.335 -6.676 -12. t,:_{ 0. _271 1.1200 0.076V
2,0.835 '3.525 20.59_ 0.2129 0.8200 0.0769

-20. _]3b - i3.525 -25.7¢2 0. 2.0000 0.0769
'00 20.754 29.384 0.2822 0.7400 0.0759

-a I. tot? -20. 754 -41. IIL' 0. 6498 -0. 5500 0. 0769

43.2J I 23.676 37.355 q. 0.7200 0.0769

-43.231 -2!}.076 -58.721 0.4092 0.1300 0.0769
95.01 _ _. 0. 0. I.0000 0.0769

-56.016 -J/. 869 -79. 743 0. 3443 O. 1 700 0.0769
71 .545 O. O. 0. I._qO00 0.0769

-71 .545 -49._48 -.112.284 0.3437 0.0300 0.0769

rREQUENCY=2500 :IZ I'RANSMISSION LOSS= 6.07

0. 0. O. 0. 2808 0. 9600 O. 0588

8.195 _.2VI 8.706 0.2}]40 0.9000 0.0588
-8. 195 -b.291 -9.511 0.2454 I.0700 0.n588

16.470 10.66o 16.695 '].2721 0.8500 0.0588
-16.470 -I0. 666 -Iv,928 0.1427 I .3800 0.0588

24.91 8 16. 220 24.046 0.2780 0.7900 0.0588
-24.918 -16.220 -31.373 O. 12.5800 0.0588
33.655 22.0t6 30.831 0.3049 0.7200 0.0588

-33.655 -22.076 -44.C 12 0.5640 -0.2800 0.0588
42.856 28.409 37. 114 O. 0.7300 0.0588

-42.856 -28.409 -5}]. 12n 0.n122 0.1200 0.0588

52.80v O. ' • c. 1.0000 0.0588

Figure 41. Sample Output (Continued).

4. 7659

4. 8281

I0.4055

4. 4967

1.0000
20. o000

4. 8793

20. 0000
20.OOOO

4.76J9
4.7115
7.5142
4. 6035

25. q000
25. 0000

2. 0704
20. 0000

5. 8353

20.0000
20.0000

a.7659
4. 8978
0,6908
4.9128

25.0000
4,4865
I .0000

25. 0000
2.87_

20. 0000
5. 8353

20.0000

I I. 9307

4. 7659

4.6343
5. 992 8
4. 9678

10,8168
4.71_59

25. n000

3. 7790
1. 0000

25. O00O
2. 7835

20. n000
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-52.809
64.109

-64.109
78.514

-78.514

6.449
-6.449
12.938

-12.938
19.b07

-19.5n7
26.206

-26.206
33.0_8

-33.098

40,266

-40.266
47.837

-47. 837

56.016

-56.016
65.200

-65.20_
76.385

-76.385
95.962

-95.962

-35.51 3 -74.288 0.3556 O. I800 0.0588

O. O. O. I.0000 0.0588

-43.985 -94. 481 0.3290 O. 1200 0.0588

O. O. O. 1.0000 0.0588

-55.586 O. O. I.0000 0.058.8

FREQUENCY=3150 HZ TRANSI_ISSION LOSS= 6.37

O. O. 0.2808 0.9600 0.0435

4.162 6.919 n.2871 0.9100 0.0435

-4.162 -7.418 0.2551 1.0400 0.0435

8.365 13.382 0.2E39 0.8700 0.0435

-8.365 -15.383 0.2073 1.1900 0.0435
12.653 19.430 0.2704 0.8300 0.0435

-12.653 -23.951 0.0402 1.7100 0.0435
17.076 25.098 0.2811 0.7800 0.0435

-17.076 -33.188 0. -8.8000 0.0435

21.698 30.422 0.2810 0.7300 0.0435
-21.698 -43.183 0.5850 -0.3500 0.0435

26.606 35.433 O. 1.0200 0.0435

-26.606 -54.069 0.4374 0.0700 0.0435
O. O. q. 1.0000 0.0435

-31.927 -66.084 0.378 0.1700 0.0435

O. 0. O. l.nO00 0.0435

-37.869 --79.743 0.3443 0.1700 0.0435
O. O. r. 1.0000 0.0435

-44.830 -96.655 0'3285 0.1100 0.0435
O. O. O. 1.0000 0.0435

-53.807 O. O. 1.0000 0.0435
O. O. O. 1.0000 0.0435

-71.192 O. O. 1.0000 0.n435

FREOUENCY=4000 HZ IRANSt,_ISSION LOSS= 6.81

5.0964
20.0OO0

7.9328

20.0000

20.0000

4.7659

4.5451

5.6418

4.7115

7.5142
5.0045

21.8824
4.6035

25.0000
4.4967

1.0000
25.0000

2.0704

20.0000

3.982|

20.0000

5.8353
20.0000

8.2839
20.0000

20.0000
20.0000

20.0000

Figure 41. Sample Output (Concluded).
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APPENDIX C

COUPLING OF LINE SOURCE TO DUCT MODES

To understand the coupling of the sound source with the various duct

modes possible in an annulus, we consider an idealized problem in which the

annulus is unwrapped into a rectangular duct and the siren source is modeled as

a line source (see Figure 42); "r" is the mean radius of the annulus.

We have to solve an equation for the pressure (denoted by "p"):

V2p + k2p = 6(x)6(y)

where k w/a, 6(x), _(y) are delta functions. The solution is for - _r < y

zr and has to be periodic with wavelength "2zr". Also, at x ÷ ±_, the

radiation condition is to be satisfied. Let

p = _ Am(X) cos (mY).r

m=0

Note that 6(y) can be expanded in the even Fourier series as:

Co

2_r + -- cos (my) }. then_r r

1

A"m (x) + [k2 - (m)21 Am(X ) = 6(x)/_r for m _> i.

finally written down as:

ej k Jx1P = _j k r + e j km IXJcos (m--_r)

2j k _ri m

A_(x) + k 2 Ao(X ) = 6(x)/2_r and

The solution for p can be

N+I

-< Ixl (my)e m cos
r

where km =_ k2 - (_)2 and N is the largest value of m for which kr > m and

_m)2 k2Km = (_ - for m > N. We are not interested in the terms of the

series involving K in the above since they represented nonpropagating terms.
m
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The energy flux associated with each of the propagating terms can be deduced

by first writing

c°s (m--_r)= [ej (my/r)+e-J2 (my/r)J

and considering each cos (my/r) term to involve two plane waves (one for +y

and other for -y and then noting that the energy flux will be proportional to

cos2(my/r) x (km/k). The square of the cosine term is proportional to the

power in the wave direction and it is the axial power component that is of

interest. Hence the product of the cosine squared and the direction cosine is

considered. Since the cut-off frequency for each mode is mm = (am/r), the net
result is that the line source will excite energy levels in each propagating

mode proportional to {f2 _ f2}-i/2 where f is the frequency of excitation and

fc the cut-off frequency of The relevant mode.
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NOMENCLATURE

a

A/A*

A..

13

B
()

BPF

Do •

lj

E
m

f

V()
G

H

I

J

k

K

L

m

M

N

P()

Q( )
r

R
O

S

t

T( )
T

Speed of sound, m/sec

Isentropic area ratio

Matrix element

Upstream coefficient matrix for n-th blade row

Amplitude of backward-travelling wave

Blade passing frequency, Hz

Matrix elements

Downstream coefficient matrix for n-th blade row

Unit vector

Energy assignment to m-th mode

Frequency, Hz

Amplitude of forward-travelling wave

Aeroacoustic flow function

Height, cm

Intensity vector

Wavenumber, _/a

(k2 + k2) I/2
x y

Axial spacing, cm

Length, cm

Circumferential lobe number

Mass flow rate, kg/sec

Mach number

Newtons

Pressure, N/m 2

Amplitude of vorticity wave

Radius, cm

Real component of impedance at an interface

Cross-sectional area

Time coordinate

Amplitude of transmitted wave

Temperature, K
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NOMENCLATURE (Continued)

TL

u w

U

V v

V

WR

x

X
o

Y

8

Y

A

D

a( )

u

_)

p

¢

_i' _21

_2

_3

Transmission loss, dB

Perturbation in axial velocity component, m/sec

Mean axial velocity component, m/sec

Perturbation in transverse velocity component, m/sec

Mean transverse velocity component, m/sec

Rotor physical speed, m/sec

Axial Cartesian coordinate, fixed to blade row

Reactive component of impedan_ at an interface

Transverse Cartesian coordinate, fixed to blade row

Upstream relative flow angle, degrees

Downstream relative flow angle, degrees

Ratio of specific heats

Increment or decrement

Acoustic energy density

Strouhai number (dimensionless frequency)

Wave propagation angle

(I +_M 2abs )

Dimensionless velocity

Dimensionless length parameter

3.14159

Density, kg/m 3

Hub/tip (radius) ratio

AbsoLute flow angle relative to axial direction, degrees; also,

dimensionless pressure in Section 3.2, ¢ = p'/Tp

Angle of inclination of acoustic wave incident on a shock

Angle of inclination of refracted wave leaving shock

Angle of inclination of vorticity wave behind shock

Circular frequency, 2_f
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NOMENCLATURE (Concluded)

abs

B
()

c

f

F

F()
i

I

m

n

Q( )

R( )
S

T

X

Y

0

1

Subscripts

Absolute flow parameter

Backward-travelling wave parameter

Cut-on

Final value in passage problem

Coordinate frame moving with fluid

Forward-travelling wave parameter

Initial value in passage problem

Incident wave parameter

Value downstream of n-th blade row

Value upstream of n-th blade row

Vorticity wave parameter

Reflected wave parameter

Static value

Transmitted wave parameter

Axial component

Transverse component

Stagnation value

Station upstream of turbine

Superscripts

( )' Perturbation quantity

( )* Root mean square value
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